⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

An [[wp:Egyptian fraction|Egyptian fraction]] is the sum of distinct unit fractions such as:

:::: $\tfrac\left\{1\right\}\left\{2\right\} + \tfrac\left\{1\right\}\left\{3\right\} + \tfrac\left\{1\right\}\left\{16\right\} ,\left(= \tfrac\left\{43\right\}\left\{48\right\}\right)$

Each fraction in the expression has a numerator equal to '''1''' (unity) and a denominator that is a positive integer, and all the denominators are distinct (i.e., no repetitions).

Fibonacci's [[wp:Greedy algorithm for Egyptian fractions|Greedy algorithm for Egyptian fractions]] expands the fraction $\tfrac\left\{x\right\}\left\{y\right\}$ to be represented by repeatedly performing the replacement

:::: $\frac\left\{x\right\}\left\{y\right\} = \frac\left\{1\right\}\left\{\lceil y/x\rceil\right\} + \frac\left\{\left(-y\right)!!!!\mod x\right\}\left\{y\lceil y/x\rceil\right\}$

(simplifying the 2nd term in this replacement as necessary, and where $\lceil x \rceil$ is the ''ceiling'' function).

For this task, [[wp:Fraction (mathematics)#Simple.2C_common.2C_or_vulgar_fractions|Proper and improper fractions]] must be able to be expressed.

Proper fractions are of the form $\tfrac\left\{a\right\}\left\{b\right\}$ where $a$ and $b$ are positive integers, such that $a < b$, and

improper fractions are of the form $\tfrac\left\{a\right\}\left\{b\right\}$ where $a$ and $b$ are positive integers, such that ''a'' ≥ ''b''.

(See the [[#REXX|REXX programming example]] to view one method of expressing the whole number part of an improper fraction.)

For improper fractions, the integer part of any improper fraction should be first isolated and shown preceding the Egyptian unit fractions, and be surrounded by square brackets [''n''].

• show the Egyptian fractions for: $\tfrac\left\{43\right\}\left\{48\right\}$ and $\tfrac\left\{5\right\}\left\{121\right\}$ and $\tfrac\left\{2014\right\}\left\{59\right\}$
• for all proper fractions, $\tfrac\left\{a\right\}\left\{b\right\}$ where $a$ and $b$ are positive one-or two-digit (decimal) integers, find and show an Egyptian fraction that has: ::* the largest number of terms, ::* the largest denominator.
• for all one-, two-, and three-digit integers, find and show (as above). {extra credit}

;Also see:

• Wolfram MathWorld™ entry: [http://mathworld.wolfram.com/EgyptianFraction.html Egyptian fraction]

## C#

{{trans|Visual Basic .NET}}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
using System.Text;

namespace EgyptianFractions {
class Program {
class Rational : IComparable<Rational>, IComparable<int> {
public BigInteger Num { get; }
public BigInteger Den { get; }

public Rational(BigInteger n, BigInteger d) {
var c = Gcd(n, d);
Num = n / c;
Den = d / c;
if (Den < 0) {
Num = -Num;
Den = -Den;
}
}

public Rational(BigInteger n) {
Num = n;
Den = 1;
}

public override string ToString() {
if (Den == 1) {
return Num.ToString();
} else {
return string.Format("{0}/{1}", Num, Den);
}
}

return new Rational(Num * rhs.Den + rhs.Num * Den, Den * rhs.Den);
}

public Rational Sub(Rational rhs) {
return new Rational(Num * rhs.Den - rhs.Num * Den, Den * rhs.Den);
}

public int CompareTo(Rational rhs) {
var ad = Num * rhs.Den;
var bc = Den * rhs.Num;
}

public int CompareTo(int rhs) {
var ad = Num * rhs;
var bc = Den * rhs;
}
}

static BigInteger Gcd(BigInteger a, BigInteger b) {
if (b == 0) {
if (a < 0) {
return -a;
} else {
return a;
}
} else {
return Gcd(b, a % b);
}
}

static List<Rational> Egyptian(Rational r) {
List<Rational> result = new List<Rational>();

if (r.CompareTo(1) >= 0) {
if (r.Den == 1) {
return result;
}
r = r.Sub(result[0]);
}

BigInteger modFunc(BigInteger m, BigInteger n) {
return ((m % n) + n) % n;
}

while (r.Num != 1) {
var q = (r.Den + r.Num - 1) / r.Num;
r = new Rational(modFunc(-r.Den, r.Num), r.Den * q);
}

return result;
}

static string FormatList<T>(IEnumerable<T> col) {
StringBuilder sb = new StringBuilder();
var iter = col.GetEnumerator();

sb.Append('[');
if (iter.MoveNext()) {
sb.Append(iter.Current);
}
while (iter.MoveNext()) {
sb.AppendFormat(", {0}", iter.Current);
}
sb.Append(']');

return sb.ToString();
}

static void Main() {
List<Rational> rs = new List<Rational> {
new Rational(43, 48),
new Rational(5, 121),
new Rational(2014, 59)
};
foreach (var r in rs) {
Console.WriteLine("{0} => {1}", r, FormatList(Egyptian(r)));
}

var lenMax = Tuple.Create(0UL, new Rational(0));
var denomMax = Tuple.Create(BigInteger.Zero, new Rational(0));

var query = (from i in Enumerable.Range(1, 100)
from j in Enumerable.Range(1, 100)
select new Rational(i, j))
.Distinct()
.ToList();
foreach (var r in query) {
var e = Egyptian(r);
ulong eLen = (ulong) e.Count;
var eDenom = e.Last().Den;
if (eLen > lenMax.Item1) {
lenMax = Tuple.Create(eLen, r);
}
if (eDenom > denomMax.Item1) {
denomMax = Tuple.Create(eDenom, r);
}
}

Console.WriteLine("Term max is {0} with {1} terms", lenMax.Item2, lenMax.Item1);
var dStr = denomMax.Item1.ToString();
Console.WriteLine("Denominator max is {0} with {1} digits {2}...{3}", denomMax.Item2, dStr.Length, dStr.Substring(0, 5), dStr.Substring(dStr.Length - 5, 5));
}
}
}


{{out}}

43/48 => [1/2, 1/3, 1/16]
5/121 => [1/25, 1/757, 1/763309, 1/873960180913, 1/1527612795642093418846225]
2014/59 => [34, 1/8, 1/95, 1/14947, 1/670223480]
Term max is 97/53 with 9 terms
Denominator max is 8/97 with 150 digits 57950...89665


## Common Lisp

(defun egyption-fractions (x y &optional acc)
(let* ((a (/ x y)))
(cond
((> (numerator a) (denominator a))
(multiple-value-bind (q r) (floor x y)
(if (zerop r)
(cons q acc)
(egyption-fractions r y (cons q acc)))))
((= (numerator a) 1) (reverse (cons a acc)))
(t (let ((b (ceiling y x)))
(egyption-fractions (mod (- y) x) (* y b) (cons (/ b) acc)))))))

(defun test (n fn)
(car (sort (loop for i from 1 to n append
(loop for j from 2 to n collect
(cons (/ i j) (funcall fn (egyption-fractions i j)))))
#'>
:key #'cdr)))



{{out}} Basic tests:

(egyption-fractions 43 48)
(egyption-fractions 5 121)
(egyption-fractions 2014 59)
(egyption-fractions 8 97)

(1/2 1/3 1/16)
(1/25 1/757 1/763309 1/873960180913 1/1527612795642093418846225)
(34 1/8 1/95 1/14947 1/670223480)
(1/13 1/181 1/38041 1/1736503177 1/3769304102927363485
1/18943537893793408504192074528154430149
1/538286441900380211365817285104907086347439746130226973253778132494225813153
1/579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665)


Other tests:

(test 999 #'length)
(test 999 (lambda (xs) (loop for x in xs maximizing (denominator x))))

(493/457 . 13)
(36/457
. 839018826833450186636781520007011999269820404906753180244759299287837378895397605613261469995626498719289835112392530430840514102146998625666594756995273418015600023494049208108894185781774002683063204252356172520941088783702738286944210460710059319691268110283467445381026653628599765684739105388642310044785844902157076919003735231543781785073393176144167688252446541416466418608465458502997971425428342769433127784560570193376772878336217849260872114137931351960543608384244009505664253173875705234889570853924105640193619301332776989688248555027054395237907581951261868280899150574360164800187964167274323078311078867593844043149124596271281252530924719121766925749760855109100066731841478262812686642693395896229983745226277793055820609058348269152190083695704685769622011655159174272326647342695589818127126303038171968768650476413027459205291075571637957597356820188031655122749743652301268394542123970892422944335857917641636041892192547135178153602038877677614358281581103685526041329841496863410305888255234495015115912388514981113593387572720476744188169200130515719608747338810136728267784013352396910979904545913458536243327311977805126410065576961237640824852114328884086581542091492600312838425666927627674227053793897767395465326589843035773944346372949759909905561209334216847158156644884281300512699910530092870919061876615770708519243818676366245477462042294267674677954783726990349386117468071932874021023714524610740225814235147693954027910741673103980749749728106483987721602738673173009362802337092908847797499475895347112889339502928407808058670297722175686638678788738689803945574002805677250463286479363670076942509109589495377221095405979217163821481666646160815221224686562530536116613645305335922819524037829878961518170177968768364853399057357772141655622381280196908637031556436461404285930426436983658106288733881761514992109680298995922754466040011586713812553117621857109517258943846004179432521131844156242428351270188803919554398620084668514054504414062276012292497375238210886595006249453460414790147611422121782194848803348777061816460876697945418158442269512987729152441940326466631610424906158237288218706447963113019239557885486647314085357651895226117364760315394354624547919209138539180807829672545924239541758108877100331729470119526373928796447673951888289511964811633025369821156695934557103429921063387965046715070102916811976552584464153981214277622597308113449320462341683055200576571910241686615924531368198770946893858410058348221985603151428153382461711196734214085852523778422630907646235900752317571022131569421231196329080023952364788544301495422061066036911772385739659997665503832444529713544286955548310166168837889046149061296461059432238621602179724809510024772127497080258401694929973105184832214622785679651550368465524821062859837409907538269572622296774545103747438431266995525592705)



## D

Assuming the Python entry is correct, this code is equivalent. This requires the D module of the Arithmetic/Rational task. {{trans|Python}}

import std.stdio, std.bigint, std.algorithm, std.range, std.conv, std.typecons,
arithmetic_rational: Rat = Rational;

Rat[] egyptian(Rat r) pure nothrow {
typeof(return) result;

if (r >= 1) {
if (r.denominator == 1)
return [r, Rat(0, 1)];
result = [Rat(r.numerator / r.denominator, 1)];
r -= result[0];
}

static enum mod = (in BigInt m, in BigInt n) pure nothrow =>
((m % n) + n) % n;

while (r.numerator != 1) {
immutable q = (r.denominator + r.numerator - 1) / r.numerator;
result ~= Rat(1, q);
r = Rat(mod(-r.denominator, r.numerator), r.denominator * q);
}

result ~= r;
return result;
}

void main() {
foreach (immutable r; [Rat(43, 48), Rat(5, 121), Rat(2014, 59)])
writefln("%s => %(%s %)", r, r.egyptian);

Tuple!(size_t, Rat) lenMax;
Tuple!(BigInt, Rat) denomMax;

foreach (immutable r; iota(1, 100).cartesianProduct(iota(1, 100))
.map!(nd => nd[].Rat).array.sort().uniq) {
immutable e = r.egyptian;
immutable eLen = e.length;
immutable eDenom = e.back.denominator;
if (eLen > lenMax[0])
lenMax = tuple(eLen, r);
if (eDenom > denomMax[0])
denomMax = tuple(eDenom, r);
}
writefln("Term max is %s with %d terms", lenMax[1], lenMax[0]);
immutable dStr = denomMax[0].text;
writefln("Denominator max is %s with %d digits %s...%s",
denomMax[1], dStr.length, dStr[0 .. 5], dStr[$- 5 ..$]);
}


{{out}}

43/48 => 1/2 1/3 1/16
5/121 => 1/25 1/757 1/763309 1/873960180913 1/1527612795642093418846225
2014/59 => 34 1/8 1/95 1/14947 1/670223480
Term max is 97/53 with 9 terms
Denominator max is 8/97 with 150 digits 57950...89665


## Factor

USING: backtrack formatting fry kernel locals make math
math.functions math.ranges sequences ;
IN: rosetta-code.egyptian-fractions

: >improper ( r -- str ) >fraction "%d/%d" sprintf ;

: improper ( x y -- a b ) [ /i ] [ [ rem ] [ nip ] 2bi / ] 2bi ;

:: proper ( x y -- a b )
y x / ceiling :> d1 1 d1 / y neg x rem y d1 * / ;

: expand ( a -- b c )
>fraction 2dup > [ improper ] [ proper ] if ;

: egyptian-fractions ( x -- seq )
[ [ expand [ , ] dip dup 0 = not ] loop drop ] { } make ;

: part1 ( -- )
43/48 5/121 2014/59 [
[ >improper ] [ egyptian-fractions ] bi
"%s => %[%u, %]\n" printf
] tri@ ;

: all-longest ( seq -- seq )
dup longest length '[ length _ = ] filter ;

: (largest-denominator) ( seq -- n )
[ denominator ] map supremum ;

: most-terms ( seq -- )
all-longest [ [ sum ] map ] [ first length ] bi
"most terms: %[%u, %] => %d\n" printf ;

: largest-denominator ( seq -- )
[ (largest-denominator) ] supremum-by
[ sum ] [ (largest-denominator) ] bi
"largest denominator: %u => %d\n" printf ;

: part2 ( -- )
[
99 [1,b] amb-lazy dup [1,b] amb-lazy swap /
egyptian-fractions
] bag-of [ most-terms ] [ largest-denominator ] bi ;

: egyptian-fractions-demo ( -- ) part1 part2 ;

MAIN: egyptian-fractions-demo


{{out}}


43/48 => { 1/2, 1/3, 1/16 }
5/121 => { 1/25, 1/757, 1/763309, 1/873960180913, 1/1527612795642093418846225 }
2014/59 => { 34, 1/8, 1/95, 1/14947, 1/670223480 }
most terms: { 44/53, 8/97 } => 8
largest denominator: 8/97 => 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665



## FreeBASIC

' version 16-01-2017
' compile with: fbc -s console

#Define max 30

#Include Once "gmp.bi"

Dim Shared As Mpz_ptr num(max), den(max)

Function Egyptian_fraction(fraction As String, ByRef whole As Integer, range As Integer = 0) As Integer

If InStr(fraction,"/") = 0 Then
Print "Not a fraction, program will end"
Sleep 5000, 1
End
End If

Dim As Integer i, count

Dim As Mpz_ptr tmp_num, tmp_den, x, y, q
tmp_num = Allocate(Len(__Mpz_struct)) : Mpz_init(tmp_num)
tmp_den = Allocate(Len(__Mpz_struct)) : Mpz_init(tmp_den)
x = Allocate(Len(__Mpz_struct)) : Mpz_init(x)
y = Allocate(Len(__Mpz_struct)) : Mpz_init(y)
q = Allocate(Len(__Mpz_struct)) : Mpz_init(q)

For i = 1 To max ' clear the list
Mpz_set_ui(num(i), 0)
Mpz_set_ui(den(i), 0)
Next

i = InStr(fraction,"/")
Mpz_set_str(x, Left(fraction, i -1), 10)
Mpz_set_str(y, Right(fraction, Len(fraction) - i), 10)

' if it's a improper fraction make it proper fraction
If Mpz_cmp(x , y) > 0  Then
Mpz_fdiv_q(q, x, y)
whole = Mpz_get_ui(q)
Mpz_fdiv_r(x, x, q)
Else
whole = 0
End If

Mpz_gcd(q, x, y) ' check if reduction is possible
If Mpz_cmp_ui(q, 1) > 0 Then
If range <> 0 Then ' return if we do a range test
Return -1
Else
Mpz_fdiv_q(x, x, q)
Mpz_fdiv_q(y, y, q)
End If
End If

Mpz_set(num(count), x)
Mpz_set(den(count), y)
' Fibonacci's Greedy algorithm for Egyptian fractions
Do
If Mpz_cmp_ui(num(count), 1) = 0 Then Exit Do
Mpz_set(x, num(count))
Mpz_set(y, den(count))
Mpz_cdiv_q(q, y, x)
Mpz_set_ui(num(count), 1)
Mpz_set(den(count), q)
Mpz_mul(tmp_den, y, q)
Mpz_neg(y, y)
Mpz_mod(tmp_num, y, x)
count += 1
Mpz_gcd(q, tmp_num, tmp_den) ' check if reduction is possible
If Mpz_cmp_ui(q, 1) > 0 Then
Mpz_fdiv_q(tmp_num, tmp_num, q)
Mpz_fdiv_q(tmp_den, tmp_den, q)
End If
Mpz_set(num(count), tmp_num)
Mpz_set(den(count), tmp_den)
Loop

Mpz_clear(tmp_num) : Mpz_clear(tmp_den)
Mpz_clear(x) : Mpz_clear(y) :Mpz_clear(q)

Return count

End Function

Sub prt_solution(fraction As String, whole As Integer, count As Integer)

Print fraction; " = ";

If whole <> 0 Then
Print "["; Str(whole); "] + ";
End If

For i As Integer = 0 To count
Gmp_printf("%Zd/%Zd ", num(i), den(i))
If i <> count Then Print "+ ";
Next
Print

End Sub

' ------=< MAIN >=------

Dim As Integer n, d, number, improper, max_term,  max_size
Dim As String str_in, max_term_str, max_size_str, m_str
Dim As ZString Ptr gmp_str : gmp_str = Allocate(1000000)

For n = 0 To max
num(n) = Allocate(Len(__Mpz_struct)) : Mpz_init(num(n))
den(n) = Allocate(Len(__Mpz_struct)) : Mpz_init(den(n))
Next

Data "43/48", "5/121", "2014/59"
' 4/121 = 12/363 = 11/363 + 1/363 = 1/33 + 1/363
' 5/121 = 4/121 + 1/121 = 1/33 + 1/121 + 1/363
' 2014/59 = 34 + 8/59
' 8/59 = 1/8 + 5/472 = 1/8 + 4/472 + 1/472 = 1/8 + 1/118 + 1/472

For n = 1 To 3
number = Egyptian_fraction(str_in, improper)
prt_solution(str_in, improper, number)
Print
Next

Dim As Integer a = 1 , b = 99

Do
For d = a To b
For n = 1 To d -1
str_in = Str(n) + "/" + Str(d)
number = Egyptian_fraction(str_in, improper,1)
If number = -1 Then Continue For ' skip
If number > max_term Then
max_term = number
max_term_str = str_in
ElseIf number = max_term Then
max_term_str += ", " & str_in
End If
Mpz_get_str(gmp_str, 10, den(number))
If Len(*gmp_str) > max_size Then
max_size = Len(*gmp_str)
max_size_str = str_in
m_str = *gmp_str
ElseIf max_size = Len(*gmp_str) Then
max_size_str += ", " & str_in
End If
Next
Next
Print
Print "for 1 to"; Len(Str(b)); " digits"
Print "Largest number of terms is"; max_term +1; " for "; max_term_str
Print "Largest size for denominator is"; max_size; " for "; max_size_str

If b = 999 Then Exit Do
a = b +1 : b = b * 10 +9
Loop

For n = 0 To max
Mpz_clear(num(n))
Mpz_clear(den(n))
Next

DeAllocate(gmp_str)

' empty keyboard buffer
While InKey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End


{{out}}

43/48 = 1/2 + 1/3 + 1/16

5/121 = 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225

2014/59 = [34] + 1/8 + 1/95 + 1/14947 + 1/670223480

for 1 to 2 digits
Largest number of terms is 8 for 44/53, 8/97
Largest size for denominator is 150 for 8/97

for 1 to 3 digits
Largest number of terms is 13 for 641/796, 529/914
Largest size for denominator is 2847 for 36/457, 529/914


In [http://wiki.formulae.org/Egyptian_fractions this] page you can see the solution of this task.

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text ([http://wiki.formulae.org/Editing_F%C5%8Drmul%C3%A6_expressions more info]). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.

The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.

## Erlang

-module(egypt).

-import(lists, [reverse/1, seq/2]).
-export([frac/2, show/2, rosetta/0]).

rosetta() ->
Fractions = [{N, D, second(frac(N, D))} || N <- seq(2,99), D <- seq(N+1, 99)],
{Longest, A1, B1} = findmax(fun length/1, Fractions),
io:format("~b/~b has ~b terms.~n", [A1, B1, Longest]),
{Largest, A2, B2} = findmax(fun (L) -> hd(reverse(L)) end, Fractions),
io:format("~b/~b has a really long denominator. (~b)~n", [A2, B2, Largest]).

second({_, B}) -> B.

findmax(Fn, L) -> findmax(Fn, L, 0, 0, 0).
findmax(_, [], M, A, B) -> {M, A, B};
findmax(Fn, [{A,B,Frac}|Fracs], M, A0, B0) ->
Val = Fn(Frac),
case Val > M of
true  -> findmax(Fn, Fracs, Val, A, B);
false -> findmax(Fn, Fracs, M, A0, B0)
end.

show(A, B) ->
{W, R} = frac(A, B),
case W of
0 -> ok;
_ -> io:format("[~b] ", [W])
end,
case R of
[] -> ok;
[D0|Ds] ->
io:format("1/~b ", [D0]),
[io:format("+ 1/~b ", [D]) || D <- Ds],
ok
end.

frac(A, B) ->
{A div B, reverse(proper(A rem B, B, []))}.

proper(0, _, L) -> L;
proper(1, Y, L) -> [Y|L];
proper(X, Y, L) ->
D = ceildiv(Y, X),
X2 = mod(-Y, X),
Y2 = Y*ceildiv(Y, X),
proper(X2, Y2, [D|L]).

ceildiv(A, B) ->
Q = A div B,
case A rem B of
0 -> Q;
_ -> Q+1
end.

mod(A, M) ->
B = A rem M,
if
B < 0 -> B + M;
true -> B
end.



{{out}}


129> egypt:show(43,48).
1/2 + 1/3 + 1/16 ok
130> egypt:show(5,121).
1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 ok
131> egypt:show(2014,59).
[34] 1/8 + 1/95 + 1/14947 + 1/670223480 ok
132> egypt:rosetta().
8/97 has 8 terms.
8/97 has a really long denominator. (579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665)
ok



## Go

{{trans|Kotlin}} ... except that Go already has support for arbitrary precision rational numbers in its standard library.

package main

import (
"fmt"
"math/big"
"strings"
)

var zero = new(big.Int)
var one = big.NewInt(1)

func toEgyptianRecursive(br *big.Rat, fracs []*big.Rat) []*big.Rat {
if br.Num().Cmp(zero) == 0 {
return fracs
}
iquo := new(big.Int)
irem := new(big.Int)
iquo.QuoRem(br.Denom(), br.Num(), irem)
if irem.Cmp(zero) > 0 {
}
rquo := new(big.Rat).SetFrac(one, iquo)
fracs = append(fracs, rquo)
num2 := new(big.Int).Neg(br.Denom())
num2.Rem(num2, br.Num())
if num2.Cmp(zero) < 0 {
}
denom2 := new(big.Int)
denom2.Mul(br.Denom(), iquo)
f := new(big.Rat).SetFrac(num2, denom2)
if f.Num().Cmp(one) == 0 {
fracs = append(fracs, f)
return fracs
}
fracs = toEgyptianRecursive(f, fracs)
return fracs
}

func toEgyptian(rat *big.Rat) []*big.Rat {
if rat.Num().Cmp(zero) == 0 {
return []*big.Rat{rat}
}
var fracs []*big.Rat
if rat.Num().CmpAbs(rat.Denom()) >= 0 {
iquo := new(big.Int)
iquo.Quo(rat.Num(), rat.Denom())
rquo := new(big.Rat).SetFrac(iquo, one)
rrem := new(big.Rat)
rrem.Sub(rat, rquo)
fracs = append(fracs, rquo)
fracs = toEgyptianRecursive(rrem, fracs)
} else {
fracs = toEgyptianRecursive(rat, fracs)
}
return fracs
}

func main() {
fracs := []*big.Rat{big.NewRat(43, 48), big.NewRat(5, 121), big.NewRat(2014, 59)}
for _, frac := range fracs {
list := toEgyptian(frac)
if list[0].Denom().Cmp(one) == 0 {
first := fmt.Sprintf("[%v]", list[0].Num())
temp := make([]string, len(list)-1)
for i := 1; i < len(list); i++ {
temp[i-1] = list[i].String()
}
rest := strings.Join(temp, " + ")
fmt.Printf("%v -> %v + %s\n", frac, first, rest)
} else {
temp := make([]string, len(list))
for i := 0; i < len(list); i++ {
temp[i] = list[i].String()
}
all := strings.Join(temp, " + ")
fmt.Printf("%v -> %s\n", frac, all)
}
}

for _, r := range [2]int{98, 998} {
if r == 98 {
fmt.Println("\nFor proper fractions with 1 or 2 digits:")
} else {
fmt.Println("\nFor proper fractions with 1, 2 or 3 digits:")
}
maxSize := 0
var maxSizeFracs []*big.Rat
maxDen := zero
var maxDenFracs []*big.Rat
var sieve = make([][]bool, r+1) // to eliminate duplicates
for i := 0; i <= r; i++ {
sieve[i] = make([]bool, r+2)
}
for i := 1; i <= r; i++ {
for j := i + 1; j <= r+1; j++ {
if sieve[i][j] {
continue
}
f := big.NewRat(int64(i), int64(j))
list := toEgyptian(f)
listSize := len(list)
if listSize > maxSize {
maxSize = listSize
maxSizeFracs = maxSizeFracs[0:0]
maxSizeFracs = append(maxSizeFracs, f)
} else if listSize == maxSize {
maxSizeFracs = append(maxSizeFracs, f)
}
listDen := list[len(list)-1].Denom()
if listDen.Cmp(maxDen) > 0 {
maxDen = listDen
maxDenFracs = maxDenFracs[0:0]
maxDenFracs = append(maxDenFracs, f)
} else if listDen.Cmp(maxDen) == 0 {
maxDenFracs = append(maxDenFracs, f)
}
if i < r/2 {
k := 2
for {
if j*k > r+1 {
break
}
sieve[i*k][j*k] = true
k++
}
}
}
}
fmt.Println("  largest number of items =", maxSize)
fmt.Println("  fraction(s) with this number :", maxSizeFracs)
md := maxDen.String()
fmt.Print("  largest denominator = ", len(md), " digits, ")
fmt.Print(md[0:20], "...", md[len(md)-20:], "\b\n")
fmt.Println("  fraction(s) with this denominator :", maxDenFracs)
}
}


{{out}}


43/48 -> 1/2 + 1/3 + 1/16
5/121 -> 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225
2014/59 -> [34] + 1/8 + 1/95 + 1/14947 + 1/670223480

For proper fractions with 1 or 2 digits:
largest number of items = 8
fraction(s) with this number : [8/97 44/53]
largest denominator = 150 digits, 57950458706754280171...62011424993909789665
fraction(s) with this denominator : [8/97]

For proper fractions with 1, 2 or 3 digits:
largest number of items = 13
fraction(s) with this number : [529/914 641/796]
largest denominator = 2847 digits, 83901882683345018663...38431266995525592705
fraction(s) with this denominator : [36/457 529/914]



import Data.Ratio (Ratio, (%), denominator, numerator)

egyptianFraction :: Integral a => Ratio a -> [Ratio a]
egyptianFraction n
| n < 0 = map negate (egyptianFraction (-n))
| n == 0 = []
| x == 1 = [n]
| x > y = (x div y % 1) : egyptianFraction (x mod y % y)
| otherwise = (1 % r) : egyptianFraction ((-y) mod x % (y * r))
where
x = numerator n
y = denominator n
r = y div x + 1


'''Testing''':

λ> :m Test.QuickCheck
λ> quickCheck (\n -> n == (sum $egyptianFraction n)) +++ OK, passed 100 tests.  '''Tasks''': import Data.List (intercalate, maximumBy) import Data.Ord (comparing) task1 = mapM_ run [43 % 48, 5 % 121, 2014 % 59] where run x = putStrLn$ show x ++ " = " ++ result x
result x = intercalate " + " $show <$> egyptianFraction x

maximumBy
(comparing snd)
[ (a % b, length $egyptianFraction (a % b)) | a <- [1 .. n] , b <- [1 .. n] , a < b ] task22 n = maximumBy (comparing snd) [ (a % b, maximum$ map denominator $egyptianFraction (a % b)) | a <- [1 .. n] , b <- [1 .. n] , a < b ]  λ> task1 43 % 48 = 1 % 2 + 1 % 3 + 1 % 16 5 % 121 = 1 % 25 + 1 % 757 + 1 % 763309 + 1 % 873960180913 + 1 % 1527612795642093418846225 2014 % 59 = 34 % 1 + 1 % 8 + 1 % 95 + 1 % 14947 + 1 % 670223480 λ> task21 99 (44 % 53, 8) λ> task22 99 (8 % 97, 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665) λ> task21 999 (641 % 796,13) λ> task22 999 (529 % 914, 839018826833450186636781520007011999269820404906753180244759299287837378895397605613261469995626498719289835112392530430840514102146998625666594756995273418015600023494049208108894185781774002683063204252356172520941088783702738286944210460710059319691268110283467445381026653628599765684739105388642310044785844902157076919003735231543781785073393176144167688252446541416466418608465458502997971425428342769433127784560570193376772878336217849260872114137931351960543608384244009505664253173875705234889570853924105640193619301332776989688248555027054395237907581951261868280899150574360164800187964167274323078311078867593844043149124596271281252530924719121766925749760855109100066731841478262812686642693395896229983745226277793055820609058348269152190083695704685769622011655159174272326647342695589818127126303038171968768650476413027459205291075571637957597356820188031655122749743652301268394542123970892422944335857917641636041892192547135178153602038877677614358281581103685526041329841496863410305888255234495015115912388514981113593387572720476744188169200130515719608747338810136728267784013352396910979904545913458536243327311977805126410065576961237640824852114328884086581542091492600312838425666927627674227053793897767395465326589843035773944346372949759909905561209334216847158156644884281300512699910530092870919061876615770708519243818676366245477462042294267674677954783726990349386117468071932874021023714524610740225814235147693954027910741673103980749749728106483987721602738673173009362802337092908847797499475895347112889339502928407808058670297722175686638678788738689803945574002805677250463286479363670076942509109589495377221095405979217163821481666646160815221224686562530536116613645305335922819524037829878961518170177968768364853399057357772141655622381280196908637031556436461404285930426436983658106288733881761514992109680298995922754466040011586713812553117621857109517258943846004179432521131844156242428351270188803919554398620084668514054504414062276012292497375238210886595006249453460414790147611422121782194848803348777061816460876697945418158442269512987729152441940326466631610424906158237288218706447963113019239557885486647314085357651895226117364760315394354624547919209138539180807829672545924239541758108877100331729470119526373928796447673951888289511964811633025369821156695934557103429921063387965046715070102916811976552584464153981214277622597308113449320462341683055200576571910241686615924531368198770946893858410058348221985603151428153382461711196734214085852523778422630907646235900752317571022131569421231196329080023952364788544301495422061066036911772385739659997665503832444529713544286955548310166168837889046149061296461059432238621602179724809510024772127497080258401694929973105184832214622785679651550368465524821062859837409907538269572622296774545103747438431266995525592705)  ## J '''Solution''':  ef =: [: (}.~ 0={.) [: (, r2ef)/ 0 1 #: x: r2ef =: (<(<0);0) { ((] , -) >:@:<.&.%)^:((~:<.)@:%)@:{:^:a:  '''Examples''' (''required''):  (; ef)&> 43r48 5r121 2014r59 +-------+--------------------------------------------------------------+ |43r48 |1r2 1r3 1r16 | +-------+--------------------------------------------------------------+ |5r121 |1r25 1r757 1r763309 1r873960180913 1r1527612795642093418846225| +-------+--------------------------------------------------------------+ |2014r59|34 1r8 1r95 1r14947 1r670223480 | +-------+--------------------------------------------------------------+  '''Examples''' (''extended''):  NB. ef for all 1- and 2-digit fractions EF2 =: ef :: _1:&.> (</~ * %/~) i. 10^2x NB. longest ef for 1- or 2-digit fraction ($ #: (i. >./)@:,)#&>EF2
8 97
# ef 8r97
8

NB. largest denom among for 1- and 2-digit fractions
($#: (i. <./)@:|@:(<./&>)@:,) EF2 8 97 _80 ]\ ": % <./ ef 8r97 57950458706754280171310319185991860825103029195219542358352935765389941868634236 0361798689053273749372615043661810228371898539583862011424993909789665 NB. ef for all 1-,2-, and 3-digit fractions EF3 =: ef :: _1:&.> (</~ * %/~) i. 10^3x NB. longest ef for 1-, 2-,or 3-digit fraction ($ #: (i. >./)@:,)#&>EF3
529 914
# ef 529r914
13

NB. largest denom among for 1-, 2-, and 3-digit fractions
($#: (i. <./)@:|@:(<./&>)@:,) EF3 36 457 _80 ]\ ": % <./ ef 36r457 83901882683345018663678152000701199926982040490675318024475929928783737889539760 56132614699956264987192898351123925304308405141021469986256665947569952734180156 00023494049208108894185781774002683063204252356172520941088783702738286944210460 71005931969126811028346744538102665362859976568473910538864231004478584490215707 69190037352315437817850733931761441676882524465414164664186084654585029979714254 28342769433127784560570193376772878336217849260872114137931351960543608384244009 50566425317387570523488957085392410564019361930133277698968824855502705439523790 75819512618682808991505743601648001879641672743230783110788675938440431491245962 71281252530924719121766925749760855109100066731841478262812686642693395896229983 74522627779305582060905834826915219008369570468576962201165515917427232664734269 55898181271263030381719687686504764130274592052910755716379575973568201880316551 22749743652301268394542123970892422944335857917641636041892192547135178153602038 87767761435828158110368552604132984149686341030588825523449501511591238851498111 35933875727204767441881692001305157196087473388101367282677840133523969109799045 45913458536243327311977805126410065576961237640824852114328884086581542091492600 31283842566692762767422705379389776739546532658984303577394434637294975990990556 12093342168471581566448842813005126999105300928709190618766157707085192438186763 66245477462042294267674677954783726990349386117468071932874021023714524610740225 81423514769395402791074167310398074974972810648398772160273867317300936280233709 29088477974994758953471128893395029284078080586702977221756866386787887386898039 45574002805677250463286479363670076942509109589495377221095405979217163821481666 64616081522122468656253053611661364530533592281952403782987896151817017796876836 48533990573577721416556223812801969086370315564364614042859304264369836581062887 33881761514992109680298995922754466040011586713812553117621857109517258943846004 17943252113184415624242835127018880391955439862008466851405450441406227601229249 73752382108865950062494534604147901476114221217821948488033487770618164608766979 45418158442269512987729152441940326466631610424906158237288218706447963113019239 55788548664731408535765189522611736476031539435462454791920913853918080782967254 59242395417581088771003317294701195263739287964476739518882895119648116330253698 21156695934557103429921063387965046715070102916811976552584464153981214277622597 30811344932046234168305520057657191024168661592453136819877094689385841005834822 19856031514281533824617111967342140858525237784226309076462359007523175710221315 69421231196329080023952364788544301495422061066036911772385739659997665503832444 52971354428695554831016616883788904614906129646105943223862160217972480951002477 21274970802584016949299731051848322146227856796515503684655248210628598374099075 38269572622296774545103747438431266995525592705  ## Java {{trans|Kotlin}} {{works with|Java|9}} import java.math.BigDecimal; import java.math.BigInteger; import java.math.MathContext; import java.util.ArrayList; import java.util.Collections; import java.util.List; public class EgyptianFractions { private static BigInteger gcd(BigInteger a, BigInteger b) { if (b.equals(BigInteger.ZERO)) { return a; } return gcd(b, a.mod(b)); } private static class Frac implements Comparable<Frac> { private BigInteger num, denom; public Frac(BigInteger n, BigInteger d) { if (d.equals(BigInteger.ZERO)) { throw new IllegalArgumentException("Parameter d may not be zero."); } BigInteger nn = n; BigInteger dd = d; if (nn.equals(BigInteger.ZERO)) { dd = BigInteger.ONE; } else if (dd.compareTo(BigInteger.ZERO) < 0) { nn = nn.negate(); dd = dd.negate(); } BigInteger g = gcd(nn, dd).abs(); if (g.compareTo(BigInteger.ZERO) > 0) { nn = nn.divide(g); dd = dd.divide(g); } num = nn; denom = dd; } public Frac(int n, int d) { this(BigInteger.valueOf(n), BigInteger.valueOf(d)); } public Frac plus(Frac rhs) { return new Frac( num.multiply(rhs.denom).add(denom.multiply(rhs.num)), rhs.denom.multiply(denom) ); } public Frac unaryMinus() { return new Frac(num.negate(), denom); } public Frac minus(Frac rhs) { return plus(rhs.unaryMinus()); } @Override public int compareTo(Frac rhs) { BigDecimal diff = this.toBigDecimal().subtract(rhs.toBigDecimal()); if (diff.compareTo(BigDecimal.ZERO) < 0) { return -1; } if (BigDecimal.ZERO.compareTo(diff) < 0) { return 1; } return 0; } @Override public boolean equals(Object obj) { if (null == obj || !(obj instanceof Frac)) { return false; } Frac rhs = (Frac) obj; return compareTo(rhs) == 0; } @Override public String toString() { if (denom.equals(BigInteger.ONE)) { return num.toString(); } return String.format("%s/%s", num, denom); } public BigDecimal toBigDecimal() { BigDecimal bdn = new BigDecimal(num); BigDecimal bdd = new BigDecimal(denom); return bdn.divide(bdd, MathContext.DECIMAL128); } public List<Frac> toEgyptian() { if (num.equals(BigInteger.ZERO)) { return Collections.singletonList(this); } List<Frac> fracs = new ArrayList<>(); if (num.abs().compareTo(denom.abs()) >= 0) { Frac div = new Frac(num.divide(denom), BigInteger.ONE); Frac rem = this.minus(div); fracs.add(div); toEgyptian(rem.num, rem.denom, fracs); } else { toEgyptian(num, denom, fracs); } return fracs; } public void toEgyptian(BigInteger n, BigInteger d, List<Frac> fracs) { if (n.equals(BigInteger.ZERO)) { return; } BigDecimal n2 = new BigDecimal(n); BigDecimal d2 = new BigDecimal(d); BigDecimal[] divRem = d2.divideAndRemainder(n2, MathContext.UNLIMITED); BigInteger div = divRem[0].toBigInteger(); if (divRem[1].compareTo(BigDecimal.ZERO) > 0) { div = div.add(BigInteger.ONE); } fracs.add(new Frac(BigInteger.ONE, div)); BigInteger n3 = d.negate().mod(n); if (n3.compareTo(BigInteger.ZERO) < 0) { n3 = n3.add(n); } BigInteger d3 = d.multiply(div); Frac f = new Frac(n3, d3); if (f.num.equals(BigInteger.ONE)) { fracs.add(f); return; } toEgyptian(f.num, f.denom, fracs); } } public static void main(String[] args) { List<Frac> fracs = List.of( new Frac(43, 48), new Frac(5, 121), new Frac(2014, 59) ); for (Frac frac : fracs) { List<Frac> list = frac.toEgyptian(); Frac first = list.get(0); if (first.denom.equals(BigInteger.ONE)) { System.out.printf("%s -> [%s] + ", frac, first); } else { System.out.printf("%s -> %s", frac, first); } for (int i = 1; i < list.size(); ++i) { System.out.printf(" + %s", list.get(i)); } System.out.println(); } for (Integer r : List.of(98, 998)) { if (r == 98) { System.out.println("\nFor proper fractions with 1 or 2 digits:"); } else { System.out.println("\nFor proper fractions with 1, 2 or 3 digits:"); } int maxSize = 0; List<Frac> maxSizeFracs = new ArrayList<>(); BigInteger maxDen = BigInteger.ZERO; List<Frac> maxDenFracs = new ArrayList<>(); boolean[][] sieve = new boolean[r + 1][]; for (int i = 0; i < r + 1; ++i) { sieve[i] = new boolean[r + 2]; } for (int i = 1; i < r; ++i) { for (int j = i + 1; j < r + 1; ++j) { if (sieve[i][j]) continue; Frac f = new Frac(i, j); List<Frac> list = f.toEgyptian(); int listSize = list.size(); if (listSize > maxSize) { maxSize = listSize; maxSizeFracs.clear(); maxSizeFracs.add(f); } else if (listSize == maxSize) { maxSizeFracs.add(f); } BigInteger listDen = list.get(list.size() - 1).denom; if (listDen.compareTo(maxDen) > 0) { maxDen = listDen; maxDenFracs.clear(); maxDenFracs.add(f); } else if (listDen.equals(maxDen)) { maxDenFracs.add(f); } if (i < r / 2) { int k = 2; while (true) { if (j * k > r + 1) break; sieve[i * k][j * k] = true; k++; } } } } System.out.printf(" largest number of items = %s\n", maxSize); System.out.printf("fraction(s) with this number : %s\n", maxSizeFracs); String md = maxDen.toString(); System.out.printf(" largest denominator = %s digits, ", md.length()); System.out.printf("%s...%s\n", md.substring(0, 20), md.substring(md.length() - 20, md.length())); System.out.printf("fraction(s) with this denominator : %s\n", maxDenFracs); } } }  {{out}} 43/48 -> 1/2 + 1/3 + 1/16 5/121 -> 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 -> [34] + + 1/8 + 1/95 + 1/14947 + 1/670223480 For proper fractions with 1 or 2 digits: largest number of items = 8 fraction(s) with this number : [8/97, 44/53] largest denominator = 150 digits, 57950458706754280171...62011424993909789665 fraction(s) with this denominator : [8/97] For proper fractions with 1, 2 or 3 digits: largest number of items = 13 fraction(s) with this number : [529/914, 641/796] largest denominator = 2847 digits, 83901882683345018663...38431266995525592705 fraction(s) with this denominator : [36/457, 529/914]  ## Julia {{works with|Julia|0.6}} struct EgyptianFraction{T<:Integer} <: Real int::T frac::NTuple{N,Rational{T}} where N end Base.show(io::IO, ef::EgyptianFraction) = println(io, "[", ef.int, "] ", join(ef.frac, " + ")) Base.length(ef::EgyptianFraction) = !iszero(ef.int) + length(ef.frac) function Base.convert(::Type{EgyptianFraction{T}}, fr::Rational) where T fr, int::T = modf(fr) fractions = Vector{Rational{T}}(0) x::T, y::T = numerator(fr), denominator(fr) iszero(x) && return EgyptianFraction{T}(int, (x // y,)) while x != one(x) push!(fractions, one(T) // cld(y, x)) x, y = mod1(-y, x), y * cld(y, x) d = gcd(x, y) x ÷= d y ÷= d end push!(fractions, x // y) return EgyptianFraction{T}(int, tuple(fractions...)) end Base.convert(::Type{EgyptianFraction}, fr::Rational{T}) where T = convert(EgyptianFraction{T}, fr) Base.convert(::Type{EgyptianFraction{T}}, fr::EgyptianFraction) where T = EgyptianFraction{T}(convert(T, fr.int), convert.(Rational{T}, fr.frac)) Base.convert(::Type{Rational{T}}, fr::EgyptianFraction) where T = T(fr.int) + sum(convert.(Rational{T}, fr.frac)) Base.convert(::Type{Rational}, fr::EgyptianFraction{T}) where T = convert(Rational{T}, fr) @show EgyptianFraction(43 // 48) @show EgyptianFraction{BigInt}(5 // 121) @show EgyptianFraction(2014 // 59) function task(fractions::AbstractVector) fracs = convert(Vector{EgyptianFraction{BigInt}}, fractions) local frlenmax::EgyptianFraction{BigInt} local lenmax = 0 local frdenmax::EgyptianFraction{BigInt} local denmax = 0 for f in fracs if length(f) ≥ lenmax lenmax = length(f) frlenmax = f end if denominator(last(f.frac)) ≥ denmax denmax = denominator(last(f.frac)) frdenmax = f end end return frlenmax, lenmax, frdenmax, denmax end fr = collect((x // y) for x in 1:100 for y in 1:100 if x != y) |> unique frlenmax, lenmax, frdenmax, denmax = task(fr) println("Longest fraction, with length$lenmax: \n", Rational(frlenmax), "\n = ", frlenmax)
println("Fraction with greatest denominator\n(that is $denmax):\n", Rational(frdenmax), "\n = ", frdenmax) println("\n# For 1 digit-integers:") fr = collect((x // y) for x in 1:10 for y in 1:10 if x != y) |> unique frlenmax, lenmax, frdenmax, denmax = task(fr) println("Longest fraction, with length$lenmax: \n", Rational(frlenmax), "\n = ", frlenmax)
println("Fraction with greatest denominator\n(that is $denmax):\n", Rational(frdenmax), "\n = ", frdenmax) println("# For 3 digit-integers:") fr = collect((x // y) for x in 1:1000 for y in 1:1000 if x != y) |> unique frlenmax, lenmax, frdenmax, denmax = task(fr) println("Longest fraction, with length$lenmax: \n", Rational(frlenmax), "\n = ", frlenmax)
println("Fraction with greatest denominator\n(that is $denmax):\n", Rational(frdenmax), "\n = ", frdenmax)  {{out}} EgyptianFraction(43 // 48) = [0] 1//2 + 1//3 + 1//16 EgyptianFraction{BigInt}(5 // 121) = [0] 1//25 + 1//757 + 1//763309 + 1//873960180913 + 1//1527612795642093418846225 EgyptianFraction(2014 // 59) = [34] 1//8 + 1//95 + 1//14947 + 1//670223480 Longest fraction, with length 9: 97//53 = [1] 1//2 + 1//4 + 1//13 + 1//307 + 1//120871 + 1//20453597227 + 1//697249399186783218655 + 1//1458470173998990524806872692984177836808420 Fraction with greatest denominator (that is 5795045870675428...424993909789665): 8//97 = [0] 1//13 + 1//181 + 1//38041 + 1//1736503177 + 1//3769304102927363485 + 1//18943537893793408504192074528154430149 + [...] # For 1 digit-integers: Longest fraction, with length 4: 10//7 = [1] 1//3 + 1//11 + 1//231 Fraction with greatest denominator (that is 231): 10//7 = [1] 1//3 + 1//11 + 1//231 # For 3 digit-integers: Longest fraction, with length 13: 950//457 = [2] 1//13 + 1//541 + 1//321409 + 1//114781617793 + 1//14821672255960844346913 + ... Fraction with greatest denominator (that is 8390188268334501866367815200...[2847 digits]): 950//457 = [2] 1//13 + 1//541 + 1//321409 + 1//114781617793 + 1//14821672255960844346913...  ## Kotlin As the JDK lacks a fraction or rational class, I've included a basic one in the program. // version 1.2.10 import java.math.BigInteger import java.math.BigDecimal import java.math.MathContext val bigZero = BigInteger.ZERO val bigOne = BigInteger.ONE val bdZero = BigDecimal.ZERO val context = MathContext.UNLIMITED fun gcd(a: BigInteger, b: BigInteger): BigInteger = if (b == bigZero) a else gcd(b, a % b) class Frac : Comparable<Frac> { val num: BigInteger val denom: BigInteger constructor(n: BigInteger, d: BigInteger) { require(d != bigZero) var nn = n var dd = d if (nn == bigZero) { dd = bigOne } else if (dd < bigZero) { nn = -nn dd = -dd } val g = gcd(nn, dd).abs() if (g > bigOne) { nn /= g dd /= g } num = nn denom = dd } constructor(n: Int, d: Int) : this(n.toBigInteger(), d.toBigInteger()) operator fun plus(other: Frac) = Frac(num * other.denom + denom * other.num, other.denom * denom) operator fun unaryMinus() = Frac(-num, denom) operator fun minus(other: Frac) = this + (-other) override fun compareTo(other: Frac): Int { val diff = this.toBigDecimal() - other.toBigDecimal() return when { diff < bdZero -> -1 diff > bdZero -> +1 else -> 0 } } override fun equals(other: Any?): Boolean { if (other == null || other !is Frac) return false return this.compareTo(other) == 0 } override fun toString() = if (denom == bigOne) "$num" else "$num/$denom"

fun toBigDecimal() = num.toBigDecimal() / denom.toBigDecimal()

fun toEgyptian(): List<Frac> {
if (num == bigZero) return listOf(this)
val fracs = mutableListOf<Frac>()
if (num.abs() >= denom.abs()) {
val div = Frac(num / denom, bigOne)
val rem = this - div
toEgyptian(rem.num, rem.denom, fracs)
}
else {
toEgyptian(num, denom, fracs)
}
return fracs
}

private tailrec fun toEgyptian(
n: BigInteger,
d: BigInteger,
fracs: MutableList<Frac>
) {
if (n == bigZero) return
val n2 = n.toBigDecimal()
val d2 = d.toBigDecimal()
var divRem = d2.divideAndRemainder(n2, context)
var div = divRem[0].toBigInteger()
if (divRem[1] > bdZero) div++
var n3 = (-d) % n
if (n3 < bigZero) n3 += n
val d3 = d * div
val f = Frac(n3, d3)
if (f.num == bigOne) {
return
}
toEgyptian(f.num, f.denom, fracs)
}
}

fun main(args: Array<String>) {
val fracs = listOf(Frac(43, 48), Frac(5, 121), Frac(2014,59))
for (frac in fracs) {
val list = frac.toEgyptian()
if (list[0].denom == bigOne) {
val first = "[${list[0]}]" println("$frac -> $first +${list.drop(1).joinToString(" + ")}")
}
else {
println("$frac ->${list.joinToString(" + ")}")
}
}

for (r in listOf(98, 998)) {
if (r == 98)
println("\nFor proper fractions with 1 or 2 digits:")
else
println("\nFor proper fractions with 1, 2 or 3 digits:")
var maxSize = 0
var maxSizeFracs = mutableListOf<Frac>()
var maxDen = bigZero
var maxDenFracs = mutableListOf<Frac>()
val sieve = List(r + 1) { BooleanArray(r + 2) }  // to eliminate duplicates
for (i in 1..r) {
for (j in (i + 1)..(r + 1)) {
if (sieve[i][j]) continue
val f = Frac(i, j)
val list = f.toEgyptian()
val listSize = list.size
if (listSize > maxSize) {
maxSize = listSize
maxSizeFracs.clear()
}
else if (listSize == maxSize) {
}
val listDen = list[list.lastIndex].denom
if (listDen > maxDen) {
maxDen = listDen
maxDenFracs.clear()
}
else if (listDen == maxDen) {
}
if (i < r / 2) {
var k = 2
while (true) {
if (j * k > r + 1) break
sieve[i * k][j * k] = true
k++
}
}
}
}
println("  largest number of items = $maxSize") println(" fraction(s) with this number :$maxSizeFracs")
val md = maxDen.toString()
print("  largest denominator = ${md.length} digits, ") println("${md.take(20)}...${md.takeLast(20)}") println(" fraction(s) with this denominator :$maxDenFracs")
}
}


{{out}}


43/48 -> 1/2 + 1/3 + 1/16
5/121 -> 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225
2014/59 -> [34] + 1/8 + 1/95 + 1/14947 + 1/670223480

For proper fractions with 1 or 2 digits:
largest number of items = 8
fraction(s) with this number : [8/97, 44/53]
largest denominator = 150 digits, 57950458706754280171...62011424993909789665
fraction(s) with this denominator : [8/97]

For proper fractions with 1, 2 or 3 digits:
largest number of items = 13
fraction(s) with this number : [529/914, 641/796]
largest denominator = 2847 digits, 83901882683345018663...38431266995525592705
fraction(s) with this denominator : [36/457, 529/914]



## Mathematica

frac[n_] /; IntegerQ[1/n] := frac[n] = {n};
frac[n_] :=
frac[n] =
With[{p = Numerator[n], q = Denominator[n]},
Prepend[frac[Mod[-q, p]/(q Ceiling[1/n])], 1/Ceiling[1/n]]];
disp[f_] :=
StringRiffle[
SequenceCases[f,
l : {_, 1 ...} :>
If[Length[l] == 1 && l[[1]] < 1, ToString[l[[1]], InputForm],
"[" <> ToString[Length[l]] <> "]"]], " + "] <> " = " <>
ToString[Numerator[Total[f]]] <> "/" <>
ToString[Denominator[Total[f]]];
Print[disp[frac[43/48]]];
Print[disp[frac[5/121]]];
Print[disp[frac[2014/59]]];
fracs = Flatten[Table[frac[p/q], {q, 99}, {p, q}], 1];
Print[disp[MaximalBy[fracs, Length@*Union][[1]]]];
Print[disp[MaximalBy[fracs, Denominator@*Last][[1]]]];
fracs = Flatten[Table[frac[p/q], {q, 999}, {p, q}], 1];
Print[disp[MaximalBy[fracs, Length@*Union][[1]]]];
Print[disp[MaximalBy[fracs, Denominator@*Last][[1]]]];


{{out}}

1/2 + 1/3 + 1/16 = 43/48
1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 = 5/121
[34] + 1/8 + 1/95 + 1/14947 + 1/670223480 = 2014/59
1/2 + 1/4 + 1/13 + 1/307 + 1/120871 + 1/20453597227 + 1/697249399186783218655 + 1/1458470173998990524806872692984177836808420 = 44/53
1/13 + 1/181 + 1/38041 + 1/1736503177 + 1/3769304102927363485 + 1/18943537893793408504192074528154430149 + 1/538286441900380211365817285104907086347439746130226973253778132494225813153 + 1/579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665 = 8/97
1/2 + 1/4 + 1/19 + 1/379 + 1/159223 + 1/28520799973 + 1/929641178371338400861 + 1/1008271507277592391123742528036634174730681 + 1/1219933718865393655364635368068124756713122928811333803786753398211072842948484537833 + 1/1860297848030936654742608399135821395565274404917258533393305147319524009551744684579405649080712180254407780735949179513154143641842892458088536544987153757401025882029 + 1/4614277444518045184646591832326467411359277711335974416082881814986405515888533562332069783067894981850924485553345190160771506460024406127868096951360637582674289834858262576425271895218431296391169922044160278696744025988461165811212428548328350795432691637759392474030879286312785400132190057899968737693594392669884878193448874327093 + 1/31937334502481972335865307630139228000187060941658399518862518849553429993133277230560087986574331290756232125775998863890963263813589266879406694561350952988662850757053371133819179770003609046815203982179108798005308113258134895569927488690118483730232440575942894680942308888321353318333183158977270294582315388855860989819894602178852719674244639951777398683083694723999674418435726557523519535770015019287382321071804865681731226989916286199314883016472947639367666251368202759691810399195092598892275413777035275182318485652713871000041272524440519262054008953943029365257325370839037761555465335452562216651250516983405134378252470216494582635109781712938341456418881 + 1/2039986670246850822853427080268636607703538330430958135006350872460188775376402385474575383380701179275926633909293920375037781006938834602683282504456671345800481611955974906577358109966753513899436209725756764159504134559394933538420714469300931804842468643272796657406808805007786178371184391663721349034183315512035012402176731111044506314978549915206516847224339930494935465558632905912262959736737614637514921726288403470224139024425700070180324623265095949577758695292697562554242228453440276043742370033993859881981612938703208463591285870376619588297958810138295747858827756577616148419423031480258559516303907719233914603343421735341220080271152090557188286289527661792734931298102513902518914250419121432886312102736349552224188669212688846219382874287241971706387850290821170997846726526589069990513808709560793139660289273086403155344460608865436195352720549406793512677065107181955781264579349071905411393100989250722104770801720673437692418988638492506057962758754921169589084980707251205329924087857682559921447010465898318288868258062129919867004394488124710647843586978379399594154917914477913086776811741840849911967039211773201428676384229432761943488196359561416605048969002045397348240530911560634680322446588472763785839765588633770016209055874572792498932175778494089116461654628549726895871636209026849103988563732410165441 = 641/796
1/13 + 1/541 + 1/321409 + 1/114781617793 + 1/14821672255960844346913 + 1/251065106814993628596500876449600804290086881 + 1/73539302503361520198362339236500915390885795679264404865887253300925727812630083326272641 + 1/6489634815217096741758907148982381236931234341288936993640630568353888026513046373352130623124225014404918014072680355409470797372507720812828610332359154836067922616607391865217 + 1/52644200043597301715163084170074049765863371513744701000308778672552161021188727897845435784419167578097570308323221316037189809321236639774156001218848770417914304730719451756764847141999454715415348579218576135692260706546084789833559164567239198064491721524233401718052341737694961761810858726456915514545036448002629051435498625211733293978125476206145 + 1/3695215730973720191743335450900515442837964059737103132125137784392340041085824276783333540815086968586494259680343732030671448522298751008735945486795776365973142745077411841504712940444458881229478108614230774637316342940593842925604630011475333378620376362943942755446627099104200059416153812858633723638212819657597061963458758259287734950993940819872945202809437805131650984566124057319228963533088559443909352453788455968978250113376533423265233637558939144535732287317303130488802163512444658441011602922480039143050047663394967808639154754442570791381496210122415541628843804495020590646687354364355396925939868087995781911240513904752765014910531863571167632659092232428610030201325032663259931238141889 + 1/20481928947653467858867964360215698922460866349989714221296388791180533521147068328398292448571350580917144516243144419767021450972552458770890215041236338405232471846144964422722088363577942656244304369314740680337368003341749927848292268159627280776486153786277410225081205358330757686606252814923029488556248114378465151886875778980493919811102286892641254175976181063891774788890129279669791215911728886439002027991447164421080590166911130116483359749418047307595497010369457711350953018694479942850146580996402187310635505278301929397030213544531068769667892360925519410013180703331321321833900350008776368272790481252519169303988218210095146759870287941250090204506960847016059468728275311477613271084474766715488264771177830115028195215223644336345646870679050787515340804351339449474385172464387868299006904638274425855008729765086091731260299397062138670321522563954731398813138738073326593694555049353805161855854036423870334342280080335804850998490793742536882308453307029152812821729798744074167237835462214043679643723245065093600037959124662392297413473130606861784229249604290090458912391096328362137163951398211801143455350336317188806956746282700489013366856863803112203078858200161688528939040348825835610989725020068306497091337571398894447440161081470240965873628208205669354804691958270783090585006358905094926094885655359774269830169287513005586562246433405044654325439410730648108371520856384706590593 + 1/839018826833450186636781520007011999269820404906753180244759299287837378895397605613261469995626498719289835112392530430840514102146998625666594756995273418015600023494049208108894185781774002683063204252356172520941088783702738286944210460710059319691268110283467445381026653628599765684739105388642310044785844902157076919003735231543781785073393176144167688252446541416466418608465458502997971425428342769433127784560570193376772878336217849260872114137931351960543608384244009505664253173875705234889570853924105640193619301332776989688248555027054395237907581951261868280899150574360164800187964167274323078311078867593844043149124596271281252530924719121766925749760855109100066731841478262812686642693395896229983745226277793055820609058348269152190083695704685769622011655159174272326647342695589818127126303038171968768650476413027459205291075571637957597356820188031655122749743652301268394542123970892422944335857917641636041892192547135178153602038877677614358281581103685526041329841496863410305888255234495015115912388514981113593387572720476744188169200130515719608747338810136728267784013352396910979904545913458536243327311977805126410065576961237640824852114328884086581542091492600312838425666927627674227053793897767395465326589843035773944346372949759909905561209334216847158156644884281300512699910530092870919061876615770708519243818676366245477462042294267674677954783726990349386117468071932874021023714524610740225814235147693954027910741673103980749749728106483987721602738673173009362802337092908847797499475895347112889339502928407808058670297722175686638678788738689803945574002805677250463286479363670076942509109589495377221095405979217163821481666646160815221224686562530536116613645305335922819524037829878961518170177968768364853399057357772141655622381280196908637031556436461404285930426436983658106288733881761514992109680298995922754466040011586713812553117621857109517258943846004179432521131844156242428351270188803919554398620084668514054504414062276012292497375238210886595006249453460414790147611422121782194848803348777061816460876697945418158442269512987729152441940326466631610424906158237288218706447963113019239557885486647314085357651895226117364760315394354624547919209138539180807829672545924239541758108877100331729470119526373928796447673951888289511964811633025369821156695934557103429921063387965046715070102916811976552584464153981214277622597308113449320462341683055200576571910241686615924531368198770946893858410058348221985603151428153382461711196734214085852523778422630907646235900752317571022131569421231196329080023952364788544301495422061066036911772385739659997665503832444529713544286955548310166168837889046149061296461059432238621602179724809510024772127497080258401694929973105184832214622785679651550368465524821062859837409907538269572622296774545103747438431266995525592705 = 36/457


## Microsoft Small Basic

Small Basic but large (not huge) integers.

'Egyptian fractions - 26/07/2018
xx=2014
yy=59
x=xx
y=yy
If x>=y Then
q=Math.Floor(x/y)
tt="+("+q+")"
x=Math.Remainder(x,y)
EndIf
If x<>0 Then
While x<>1
'i=modulo(-y,x)
u=-y
v=x
modulo()
i=ret
k=Math.Ceiling(y/x)
m=m+1
tt=tt+"+1/"+k
j=y*k
If i=1 Then
tt=tt+"+1/"+j
EndIf
'n=gcd(i,j)
x=i
y=j
gcd()
n=ret
x=i/n
y=j/n
EndWhile
EndIf
TextWindow.WriteLine(xx+"/"+yy+"="+Text.GetSubTextToEnd(tt,2))

Sub modulo
wr=Math.Remainder(u,v)
While wr<0
wr=wr+v
EndWhile
ret=wr
EndSub

Sub gcd
wx=i
wy=j
wr=1
While wr<>0
wr=Math.Remainder(wx,wy)
wx=wy
wy=wr
EndWhile
ret=wx
EndSub


{{out}} 43/48=1/2+1/3 5/121=1/25+1/757+1/763309+1/873960180913+1/1527612795642093418846225 2014/59=(34)+1/8+1/95+1/14947+1/670223480

## PARI/GP


efrac(f)=my(v=List());while(f,my(x=numerator(f),y=denominator(f));listput(v,ceil(y/x));f=(-y)%x/y/v[#v]);Vec(v);
show(f)=my(n=f\1,v=efrac(f-n)); print1(f" = ["n"; "v[1]); for(i=2,#v,print1(", "v[i])); print("]");
best(n)=my(denom,denomAt,term,termAt,v); for(a=1,n-1,for(b=a+1,n, v=efrac(a/b); if(#v>term, termAt=a/b; term=#v); if(v[#v]>denom, denomAt=a/b; denom=v[#v]))); print("Most terms is "termAt" with "term); print("Biggest denominator is "denomAt" with "denom)
apply(show, [43/48, 5/121, 2014/59]);
best(9)
best(99)
best(999)



{{out}}

43/48 = [0; 2, 3, 16]
5/121 = [0; 25, 757, 763309, 873960180913, 1527612795642093418846225]
2014/59 = [34; 8, 95, 14947, 670223480]

Most terms is 3/7 with 3
Biggest denominator is 3/7 with 231

Most terms is 8/97 with 8
Biggest denominator is 8/97 with 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665

Most terms is 529/914 with 13
Biggest denominator is 36/457 with 839...705


## Perl

use strict;
use warnings;
use bigint;
sub isEgyption{
my $nr = int($_[0]);
my $de = int($_[1]);
if($nr == 0 or$de == 0){
#Invalid input
return;
}
if($de %$nr == 0){
# They divide so print
printf "1/" . int($de/$nr);
return;
}
if($nr %$de == 0){
# Invalid fraction
printf $nr/$de;
return;
}
if($nr >$de){
printf int($nr/$de) . " + ";
isEgyption($nr%$de, $de); return; } # Floor to find ceiling and print as fraction my$tmp = int($de/$nr) + 1;
printf "1/" . $tmp . " + "; isEgyption($nr*$tmp-$de, $de*$tmp);
}

my $nrI = 2014; my$deI = 59;
printf "\nEgyptian Fraction Representation of " . $nrI . "/" .$deI . " is: \n\n";
isEgyption($nrI,$deI);



{{out}}


Egyptian Fraction Representation of 2014/59 is:
34 + 1/8 + 1/95 + 1/14947 + 1/670223480



## Perl 6

role Egyptian {
method gist {
join ' + ',
("[{self.floor}]" if self.abs >= 1),
map {"1/$_"}, self.denominators; } method denominators { my ($x, $y) = self.nude;$x %= $y; my @denom = gather ($x, $y) = -$y % $x,$y * take ($y /$x).ceiling
while $x; } } say .nude.join('/'), " = ",$_ but Egyptian for 43/48, 5/121, 2014/59;

my @sample = map { $_ => .denominators }, grep * < 1, map {$_ but Egyptian},
(2 .. 99 X/ 2 .. 99);

say .key.nude.join("/"),
" has max denominator, namely ",
.value.max
given max :by(*.value.max), @sample;

say .key.nude.join("/"),
" has max number of denominators, namely ",
.value.elems
given max :by(*.value.elems), @sample;


{{out}}

43/48 = 1/2 + 1/3 + 1/16
5/121 = 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225
2014/59 = [34] + 1/8 + 1/95 + 1/14947 + 1/670223480
8/97 has max denominator, namely 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665
8/97 has max number of denominators, namely 8


Because the harmonic series diverges (albeit very slowly), it is possible to write even improper fractions as a sum of distinct unit fractions. Here is a code to do that:

role Egyptian {
method gist { join ' + ', map {"1/$_"}, self.list } method list { my$sum = 0;
gather for 2 .. * {
last if $sum == self;$sum += 1 / .take unless $sum + 1 /$_ > self;
}
}
}

say 5/4 but Egyptian;


{{out}}

1/2 + 1/3 + 1/4 + 1/6


The list of terms grows exponentially with the value of the fraction, though.

## Phix

{{trans|tcl}} {{libheader|mpfr}} The sieve copied from Go

include mpfr.e
function egyptian(integer num, denom)
mpz n = mpz_init(num),
d = mpz_init(denom),
t = mpz_init()
sequence result = {}
while mpz_cmp_si(n,0)!=0 do
mpz_cdiv_q(t, d, n)
result = append(result,"1/"&mpz_get_str(t))
mpz_neg(d,d)
mpz_mod(n,d,n)
mpz_neg(d,d)
mpz_mul(d,d,t)
end while
{n,d} = mpz_free({n,d})
return result
end function

procedure efrac(integer num, denom)
string fraction = sprintf("%d/%d",{num,denom}),
prefix = ""
if num>=denom then
integer whole = floor(num/denom)
num -= whole*denom
prefix = sprintf("[%d] + ",whole)
end if
string e = join(egyptian(num, denom)," + ")
printf(1,"%s -> %s%s\n",{fraction,prefix,e})
end procedure

efrac(43,48)
efrac(5,121)
efrac(2014,59)

integer maxt = 0,
maxd = 0
string maxts = "",
maxds = "",
maxda = ""

for r=98 to 998 by 900 do   -- (iterates just twice!)
sequence sieve = repeat(repeat(false,r+1),r) -- to eliminate duplicates
for n=1 to r do
for d=n+1 to r+1 do
if sieve[n][d]=false then
string term = sprintf("%d/%d",{n,d})
sequence terms = egyptian(n,d)
integer nterms = length(terms)
if nterms>maxt then
maxt = nterms
maxts = term
elsif nterms=maxt then
maxts &= ", " & term
end if
integer mlen = length(terms[$])-2 if mlen>maxd then maxd = mlen maxds = term maxda = terms[$]
elsif mlen=maxd then
maxds &= ", " & term
end if
if n<r/2 then
for k=2 to 9999 do
if d*k > r+1 then exit end if
sieve[n*k][d*k] = true
end for
end if
end if
end for
end for
printf(1,"\nfor proper fractions with 1 to %d digits\n",{length(sprint(r))})
printf(1,"Largest number of terms is %d for %s\n",{maxt,maxts})
maxda = maxda[3..$] -- (strip the "1/") maxda[6..-6]="..." -- (show only first/last 5 digits) printf(1,"Largest size for denominator is %d digits (%s) for %s\n",{maxd,maxda,maxds}) end for  {{out}}  43/48 -> 1/2 + 1/3 + 1/16 5/121 -> 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 -> [34] + 1/8 + 1/95 + 1/14947 + 1/670223480 for proper fractions with 1 to 2 digits Largest number of terms is 8 for 8/97, 44/53 Largest size for denominator is 150 digits (57950...89665) for 8/97 for proper fractions with 1 to 3 digits Largest number of terms is 13 for 529/914, 641/796 Largest size for denominator is 2847 digits (83901...92705) for 36/457, 529/914  ## Python ### Procedural from fractions import Fraction from math import ceil class Fr(Fraction): def __repr__(self): return '%s/%s' % (self.numerator, self.denominator) def ef(fr): ans = [] if fr >= 1: if fr.denominator == 1: return [[int(fr)], Fr(0, 1)] intfr = int(fr) ans, fr = [[intfr]], fr - intfr x, y = fr.numerator, fr.denominator while x != 1: ans.append(Fr(1, ceil(1/fr))) fr = Fr(-y % x, y* ceil(1/fr)) x, y = fr.numerator, fr.denominator ans.append(fr) return ans if __name__ == '__main__': for fr in [Fr(43, 48), Fr(5, 121), Fr(2014, 59)]: print('%r ─► %s' % (fr, ' '.join(str(x) for x in ef(fr)))) lenmax = denommax = (0, None) for fr in set(Fr(a, b) for a in range(1,100) for b in range(1, 100)): e = ef(fr) #assert sum((f[0] if type(f) is list else f) for f in e) == fr, 'Whoops!' elen, edenom = len(e), e[-1].denominator if elen > lenmax[0]: lenmax = (elen, fr, e) if edenom > denommax[0]: denommax = (edenom, fr, e) print('Term max is %r with %i terms' % (lenmax[1], lenmax[0])) dstr = str(denommax[0]) print('Denominator max is %r with %i digits %s...%s' % (denommax[1], len(dstr), dstr[:5], dstr[-5:]))  {{out}} 43/48 ─► 1/2 1/3 1/16 5/121 ─► 1/25 1/757 1/763309 1/873960180913 1/1527612795642093418846225 2014/59 ─► [34] 1/8 1/95 1/14947 1/670223480 Term max is 97/53 with 9 terms Denominator max is 8/97 with 150 digits 57950...89665  ### Composition of pure functions The derivation of a sequence of unit fractions from a single fraction is a classic case of an anamorphism or '''unfold''' abstraction – dual to a fold or catamorphism. Rather than reducing, collapsing or summarizing a structure '''to''' a single value, it builds a structure '''from''' a single value. See the '''unfoldr''' function below: {{Works with|Python|3.7}} '''Egyptian fractions''' from fractions import Fraction from functools import reduce from operator import neg # eqyptianFraction :: Ratio Int -> Ratio Int def eqyptianFraction(nd): '''The rational number nd as a sum of the series of unit fractions obtained by application of the greedy algorithm.''' def go(x): n, d = x.numerator, x.denominator r = 1 + d // n if n else None return Just((0, x) if 1 == n else ( (fr(n % d, d), fr(n // d, 1)) if n > d else ( fr(-d % n, d * r), fr(1, r) ) )) if n else Nothing() fr = Fraction f = unfoldr(go) return list(map(neg, f(-nd))) if 0 > nd else f(nd) # TESTS --------------------------------------------------- # maxEqyptianFraction :: Int -> (Ratio Int -> a) # -> (Ratio Int, a) def maxEqyptianFraction(nDigits): '''An Egyptian Fraction, representing a proper fraction with numerators and denominators of up to n digits each, which returns a maximal value for the supplied function f.''' # maxVals :: ([Ratio Int], a) -> (Ratio Int, a) # -> ([Ratio Int], a) def maxima(xsv, ndfx): xs, v = xsv nd, fx = ndfx return ([nd], fx) if fx > v else ( xs + [nd], v ) if fx == v and nd not in xs else xsv # go :: (Ratio Int -> a) -> ([Ratio Int], a) def go(f): iLast = int(nDigits * '9') fs, mx = reduce( maxima, [ (nd, f(eqyptianFraction(nd))) for nd in [ Fraction(n, d) for n in enumFromTo(1)(iLast) for d in enumFromTo(1 + n)(iLast) ] ], ([], 0) ) return f.__name__ + ' -> [' + ', '.join( map(str, fs) ) + '] -> ' + str(mx) return lambda f: go(f) # main :: IO () def main(): '''Tests''' ef = eqyptianFraction fr = Fraction print('Three values as Eqyptian fractions:') print('\n'.join([ str(fr(*nd)) + ' -> ' + ' + '.join(map(str, ef(fr(*nd)))) for nd in [(43, 48), (5, 121), (2014, 59)] ])) # maxDenominator :: [Ratio Int] -> Int def maxDenominator(ef): return max(map(lambda nd: nd.denominator, ef)) # maxTermCount :: [Ratio Int] -> Int def maxTermCount(ef): return len(ef) for i in [1, 2, 3]: print( '\nMaxima for proper fractions with up to ' + ( str(i) + ' digit(s):' ) ) for f in [maxTermCount, maxDenominator]: print(maxEqyptianFraction(i)(f)) # GENERIC ------------------------------------------------- # Just :: a -> Maybe a def Just(x): '''Constructor for an inhabited Maybe (option type) value.''' return {'type': 'Maybe', 'Nothing': False, 'Just': x} # Nothing :: Maybe a def Nothing(): '''Constructor for an empty Maybe (option type) value.''' return {'type': 'Maybe', 'Nothing': True} # enumFromTo :: (Int, Int) -> [Int] def enumFromTo(m): '''Integer enumeration from m to n.''' return lambda n: list(range(m, 1 + n)) # unfoldr :: (b -> Maybe (b, a)) -> b -> [a] def unfoldr(f): '''Dual to reduce or foldr. Where catamorphism reduces a list to a summary value, the anamorphic unfoldr builds a list from a seed value. As long as f returns Just(a, b), a is prepended to the list, and the residual b is used as the argument for the next application of f. When f returns Nothing, the completed list is returned.''' def go(xr): mb = f(xr[0]) if mb.get('Nothing'): return [] else: y, r = mb.get('Just') return [r] + go((y, r)) return lambda x: go((x, x)) # MAIN --- if __name__ == '__main__': main()  {{Out}} Three values as Eqyptian fractions: 43/48 -> 1/2 + 1/3 + 1/16 5/121 -> 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 -> 34 + 1/8 + 1/95 + 1/14947 + 1/670223480 Maxima for proper fractions with up to 1 digit(s): maxTermCount -> [3/7, 4/5, 5/7, 6/7, 7/8, 7/9, 8/9] -> 3 maxDenominator -> [3/7] -> 231 Maxima for proper fractions with up to 2 digit(s): maxTermCount -> [8/97, 44/53] -> 8 maxDenominator -> [8/97] -> 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665 Maxima for proper fractions with up to 3 digit(s): maxTermCount -> [529/914, 641/796] -> 13 maxDenominator -> [36/457, 529/914] -> 839018826833450186636781520007011999269820404906753180244759299287837378895397605613261469995626498719289835112392530430840514102146998625666594756995273418015600023494049208108894185781774002683063204252356172520941088783702738286944210460710059319691268110283467445381026653628599765684739105388642310044785844902157076919003735231543781785073393176144167688252446541416466418608465458502997971425428342769433127784560570193376772878336217849260872114137931351960543608384244009505664253173875705234889570853924105640193619301332776989688248555027054395237907581951261868280899150574360164800187964167274323078311078867593844043149124596271281252530924719121766925749760855109100066731841478262812686642693395896229983745226277793055820609058348269152190083695704685769622011655159174272326647342695589818127126303038171968768650476413027459205291075571637957597356820188031655122749743652301268394542123970892422944335857917641636041892192547135178153602038877677614358281581103685526041329841496863410305888255234495015115912388514981113593387572720476744188169200130515719608747338810136728267784013352396910979904545913458536243327311977805126410065576961237640824852114328884086581542091492600312838425666927627674227053793897767395465326589843035773944346372949759909905561209334216847158156644884281300512699910530092870919061876615770708519243818676366245477462042294267674677954783726990349386117468071932874021023714524610740225814235147693954027910741673103980749749728106483987721602738673173009362802337092908847797499475895347112889339502928407808058670297722175686638678788738689803945574002805677250463286479363670076942509109589495377221095405979217163821481666646160815221224686562530536116613645305335922819524037829878961518170177968768364853399057357772141655622381280196908637031556436461404285930426436983658106288733881761514992109680298995922754466040011586713812553117621857109517258943846004179432521131844156242428351270188803919554398620084668514054504414062276012292497375238210886595006249453460414790147611422121782194848803348777061816460876697945418158442269512987729152441940326466631610424906158237288218706447963113019239557885486647314085357651895226117364760315394354624547919209138539180807829672545924239541758108877100331729470119526373928796447673951888289511964811633025369821156695934557103429921063387965046715070102916811976552584464153981214277622597308113449320462341683055200576571910241686615924531368198770946893858410058348221985603151428153382461711196734214085852523778422630907646235900752317571022131569421231196329080023952364788544301495422061066036911772385739659997665503832444529713544286955548310166168837889046149061296461059432238621602179724809510024772127497080258401694929973105184832214622785679651550368465524821062859837409907538269572622296774545103747438431266995525592705  ## Racket #lang racket (define (real->egyptian-list R) (define (inr r rv) (match* ((exact-floor r) (numerator r) (denominator r)) [(0 0 1) (reverse rv)] [(0 1 d) (reverse (cons (/ d) rv))] [(0 x y) (let ((^y/x (exact-ceiling (/ y x)))) (inr (/ (modulo (- y) x) (* y ^y/x)) (cons (/ ^y/x) rv)))] [(flr _ _) (inr (- r flr) (cons flr rv))])) (inr R null)) (define (real->egyptian-string f) (define e.f.-list (real->egyptian-list f)) (define fmt-part (match-lambda [(? integer? (app number->string s)) s] [(app (compose number->string /) s) (format "/~a"s)])) (string-join (map fmt-part e.f.-list) " + ")) (define (stat-egyptian-fractions max-b+1) (define-values (max-l max-l-f max-d max-d-f) (for*/fold ((max-l 0) (max-l-f #f) (max-d 0) (max-d-f #f)) ((b (in-range 1 max-b+1)) (a (in-range 1 b)) #:when (= 1 (gcd a b))) (define f (/ a b)) (define e.f (real->egyptian-list (/ a b))) (define l (length e.f)) (define d (denominator (last e.f))) (values (max max-l l) (if (> l max-l) f max-l-f) (max max-d d) (if (> d max-d) f max-d-f)))) (printf #<<EOS max #terms: ~a has ~a [~.a] max denominator: ~a has ~a [~.a] EOS max-l-f max-l (real->egyptian-string max-l-f) max-d-f max-d (real->egyptian-string max-d-f))) (displayln (real->egyptian-string 43/48)) (displayln (real->egyptian-string 5/121)) (displayln (real->egyptian-string 2014/59)) (newline) (stat-egyptian-fractions 100) (newline) (stat-egyptian-fractions 1000) (module+ test (require tests/eli-tester) (test (real->egyptian-list 43/48) => '(1/2 1/3 1/16)))  {{out}} (Line continuations have been manually added to this "post-production") /2 + /3 + /16 /25 + /757 + /763309 + /873960180913 + /1527612795642093418846225 34 + /8 + /95 + /14947 + /670223480 max #terms: 44/53 has 8 [/2 + /4 + /13 + /307 + /120871 + /20453597227 + /697249399186783218655 + /1458\ 470173998990524806872692984177836808420] max denominator: 8/97 has 57950458706754280171310319185991860825103029195219542\ 3583529357653899418686342360361798689053273749372615043661810228371898539583862\ 011424993909789665 [/13 + /181 + /38041 + /1736503177 + /3769304102927363485 + /189435378937934085\ 04192074528154430149 + /5382864419003802113658172851049070863474397461302269732\ 53778132494225813153 + /5795045870675428017131031918599186082510302919521954235\ 83529357653...] max #terms: 641/796 has 13 [/2 + /4 + /19 + /379 + /159223 + /28520799973 + /929641178371338400861 + /1008\ 271507277592391123742528036634174730681 + /121993371886539365536463536806812475\ 6713122928811333803786753398211072842948484537833 + /18602978480309366547426083\ 99135821395...] max denominator: 36/457 has 839018826833450186636781520007011999269820404906753\ 1802447592992878373788953976056132614699956264987192898351123925304308405141021\ 4699862566659475699527341801560002349404920810889418578177400268306320425235617\ 2520941088783702738286944210460710059319691268110283467445381026653628599765684\ 7391053886423100447858449021570769190037352315437817850733931761441676882524465\ 4141646641860846545850299797142542834276943312778456057019337677287833621784926\ 0872114137931351960543608384244009505664253173875705234889570853924105640193619\ 3013327769896882485550270543952379075819512618682808991505743601648001879641672\ 7432307831107886759384404314912459627128125253092471912176692574976085510910006\ 6731841478262812686642693395896229983745226277793055820609058348269152190083695\ 7046857696220116551591742723266473426955898181271263030381719687686504764130274\ 5920529107557163795759735682018803165512274974365230126839454212397089242294433\ 5857917641636041892192547135178153602038877677614358281581103685526041329841496\ 8634103058882552344950151159123885149811135933875727204767441881692001305157196\ 0874733881013672826778401335239691097990454591345853624332731197780512641006557\ 6961237640824852114328884086581542091492600312838425666927627674227053793897767\ 3954653265898430357739443463729497599099055612093342168471581566448842813005126\ 9991053009287091906187661577070851924381867636624547746204229426767467795478372\ 6990349386117468071932874021023714524610740225814235147693954027910741673103980\ 7497497281064839877216027386731730093628023370929088477974994758953471128893395\ 0292840780805867029772217568663867878873868980394557400280567725046328647936367\ 0076942509109589495377221095405979217163821481666646160815221224686562530536116\ 6136453053359228195240378298789615181701779687683648533990573577721416556223812\ 8019690863703155643646140428593042643698365810628873388176151499210968029899592\ 2754466040011586713812553117621857109517258943846004179432521131844156242428351\ 2701888039195543986200846685140545044140622760122924973752382108865950062494534\ 6041479014761142212178219484880334877706181646087669794541815844226951298772915\ 2441940326466631610424906158237288218706447963113019239557885486647314085357651\ 8952261173647603153943546245479192091385391808078296725459242395417581088771003\ 3172947011952637392879644767395188828951196481163302536982115669593455710342992\ 1063387965046715070102916811976552584464153981214277622597308113449320462341683\ 0552005765719102416866159245313681987709468938584100583482219856031514281533824\ 6171119673421408585252377842263090764623590075231757102213156942123119632908002\ 3952364788544301495422061066036911772385739659997665503832444529713544286955548\ 3101661688378890461490612964610594322386216021797248095100247721274970802584016\ 9492997310518483221462278567965155036846552482106285983740990753826957262229677\ 4545103747438431266995525592705 [/13 + /541 + /321409 + /114781617793 + /14821672255960844346913 + /25106510681\ 4993628596500876449600804290086881 + /73539302503361520198362339236500915390885\ 795679264404865887253300925727812630083326272641 + /648963481521709674175890714\ 89823812369...] 1 test passed  ## REXX /*REXX program converts a fraction (can be improper) to an Egyptian fraction. */ parse arg fract '' -1 t; z=$egyptF(fract)  /*compute the Egyptian fraction.  */
if t\==.  then say  fract   ' ───► '   z    /*show Egyptian fraction from C.L.*/
return z                                    /*stick a fork in it,  we're done.*/
/*────────────────────────────────$EGYPTF subroutine──────────────────────────*/$egyptF: parse arg z 1 zn '/' zd,,$; if zd=='' then zd=1 /*whole number ?*/ if z='' then call erx "no fraction was specified." if zd==0 then call erx "denominator can't be zero:" zd if zn==0 then call erx "numerator can't be zero:" zn if zd<0 | zn<0 then call erx "fraction can't be negative" z if \datatype(zn,'W') then call erx "numerator must be an integer:" zn if \datatype(zd,'W') then call erx "denominator must be an integer:" zd _=zn%zd /*check if it's an improper fraction. */ if _>=1 then do /*if improper fraction, then append it.*/$='['_"]"                /*append the whole # part of fraction. */
zn=zn-_*zd               /*now, just use the proper fraction.   */
if zn==0  then return $/*Is there no fraction? Then we're done*/ end if zd//zn==0 then do; zd=zd%zn; zn=1; end do forever if zn==1 & datatype(zd,'W') then return$ "1/"zd   /*append Egyptian fract.*/
nd=zd%zn+1;      $=$ '1/'nd          /*add unity to integer fraction, append*/
z=$fractSub(zn'/'zd, "-", 1'/'nd) /*go and subtract the two fractions. */ parse var z zn '/' zd /*extract the numerator and denominator*/ L=2*max(length(zn),length(zd)) /*calculate if need more decimal digits*/ if L>=digits() then numeric digits L+L /*yes, then bump the decimal digits*/ end /*forever*/ /* [↑] the DO forever ends when zn==1.*/ /*────────────────────────────────$FRACTSUB subroutine────────────────────────*/
$fractSub: procedure; parse arg z.1,,z.2 1 zz.2; arg ,op do j=1 for 2; z.j=translate(z.j,'/',"_"); end if z.1=='' then z.1=(op\=="+" & op\=='-') /*unary +,- first fraction.*/ if z.2=='' then z.2=(op\=="+" & op\=='-') /*unary +.- second fraction.*/ do j=1 for 2 /*process both of the fractions*/ if pos('/',z.j)==0 then z.j=z.j"/1"; parse var z.j n.j '/' d.j if \datatype(n.j,'N') then call erx "numerator isn't an integer:" n.j if \datatype(d.j,'N') then call erx "denominator isn't an integer:" d.j n.j=n.j/1; d.j=d.j/1 /*normalize numerator/denominator.*/ do while \datatype(n.j,'W'); n.j=n.j*10/1; d.j=d.j*10/1; end /*while*/ /* [↑] normalize both numbers. */ if d.j=0 then call erx "denominator can't be zero:" z.j g=gcd(n.j,d.j); if g=0 then iterate; n.j=n.j/g; d.j=d.j/g end /*j*/ l=lcm(d.1 d.2); do j=1 for 2; n.j=l*n.j/d.j; d.j=l; end /*j*/ if op=='-' then n.2=-n.2 t=n.1+n.2; u=l; if t==0 then return 0 g=gcd(t,u); t=t/g; u=u/g; if u==1 then return t return t'/'u /*─────────────────────────────general 1─line subs────────────────────────────*/ erx: say; say '***error!***' arg(1); say; exit 13 gcd:procedure;$=;do i=1 for arg();$=$ arg(i);end;parse var $x z .;if x=0 then x=z;x=abs(x);do j=2 to words($);y=abs(word($,j));if y=0 then iterate;do until _==0;_=x//y;x=y;y=_;end;end;return x lcm:procedure;y=;do j=1 for arg();y=y arg(j);end;x=word(y,1);do k=2 to words(y);!=abs(word(y,k));if !=0 then return 0;x=x*!/gcd(x,!);end;return x p: return word(arg(1),1)  '''output''' when the input used is: 43/48  43/48 ───► 1/2 1/3 1/16  '''output''' when the input used is: 5/121  5/121 ───► 1/25 1/757 1/763309 1/873960180913 1/1527612795642093418846225  '''output''' when the input used is: 2014/59  2014/59 ───► [34] 1/8 1/95 1/14947 1/670223480  The following is a driver program to address the requirements to find the largest number of terms for a 1- or 2-digit integer, and the largest denominator. Also, the same program is used for the 1-, 2-, and 3-digit extra credit task. /*REXX pgm runs the EGYPTIAN program to find biggest denominator & # of terms.*/ parse arg top . /*get optional parameter from the C.L. */ if top=='' then top=99 /*Not specified? Then use the default.*/ oTop=top; top=abs(top) /*oTop used as a flag to display maxD. */ maxT=0; maxD=0; bigD=; bigT= /*initialize some REXX variables. */ /* [↓] determine biggest andlongest. */ do n=2 to top /*traipse through the numerators. */ do d=n+1 to top /* " " " denominators */ fract=n'/'d /*create the fraction to be used. */ y='EGYPTIAN'(fract||.) /*invoke the REXX program EGYPTIAN.REX*/ t=words(y) /*number of terms in Egyptian fraction.*/ if t>maxT then bigT=fract /*is this a new high for number terms? */ maxT=max(maxT,T) /*find the maximum number of terms. */ b=substr(word(y,t),3) /*get denominator from Egyptian fract. */ if b>maxD then bigD=fract /*is this a new denominator high ? */ maxD=max(maxD,b) /*find the maximum denominator. */ end /*d*/ /* [↑] only use proper fractions. */ end /*n*/ /* [↑] ignore the 1/n fractions. */ /* [↑] display the longest and biggest*/ @= 'in the Egyptian fractions used is' /*literal is used to make a shorter SAY*/ say 'largest number of terms' @ maxT "terms for" bigT say say 'highest denominator' @ length(maxD) "digits for" bigD if oTop>0 then say maxD /*stick a fork in it, we're all done. */  '''output''' for all 1- and 2-digit integers when using the default input:  largest number of terms in the Egyptian fractions used is 8 terms for 8/97 largest denominator in the Egyptian fractions is 150 digits is for 8/97 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665  '''output''' for all 1-, 2-, and 3-digit integers when using for input: -999  largest number of terms in the Egyptian fractions used is 13 terms for 529/914 largest denominator in the Egyptian fractions is 2847 digits is for 36/457  ## Ruby {{trans|Python}} def ef(fr) ans = [] if fr >= 1 return [[fr.to_i], Rational(0, 1)] if fr.denominator == 1 intfr = fr.to_i ans, fr = [intfr], fr - intfr end x, y = fr.numerator, fr.denominator while x != 1 ans << Rational(1, (1/fr).ceil) fr = Rational(-y % x, y * (1/fr).ceil) x, y = fr.numerator, fr.denominator end ans << fr end for fr in [Rational(43, 48), Rational(5, 121), Rational(2014, 59)] puts '%s => %s' % [fr, ef(fr).join(' + ')] end lenmax = denommax = [0] for b in 2..99 for a in 1...b fr = Rational(a,b) e = ef(fr) elen, edenom = e.length, e[-1].denominator lenmax = [elen, fr] if elen > lenmax[0] denommax = [edenom, fr] if edenom > denommax[0] end end puts 'Term max is %s with %i terms' % [lenmax[1], lenmax[0]] dstr = denommax[0].to_s puts 'Denominator max is %s with %i digits' % [denommax[1], dstr.size], dstr  {{out}}  43/48 => 1/2 + 1/3 + 1/16 5/121 => 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 => 34 + 1/8 + 1/95 + 1/14947 + 1/670223480 Term max is 44/53 with 8 terms Denominator max is 8/97 with 150 digits 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665  ## Sidef {{trans|Ruby}} func ef(fr) { var ans = [] if (fr >= 1) { return([fr]) if (fr.is_int) var intfr = fr.int ans << intfr fr -= intfr } var (x, y) = fr.nude while (x != 1) { ans << fr.inv.ceil.inv fr = ((-y % x) / y*fr.inv.ceil) (x, y) = fr.nude } ans << fr return ans } for fr in [43/48, 5/121, 2014/59] { "%s => %s\n".printf(fr.as_rat, ef(fr).map{.as_rat}.join(' + ')) } var lenmax = (var denommax = [0]) for b in range(2, 99) { for a in range(1, b-1) { var fr = a/b var e = ef(fr) var (elen, edenom) = (e.length, e[-1].denominator) lenmax = [elen, fr] if (elen > lenmax[0]) denommax = [edenom, fr] if (edenom > denommax[0]) } } "Term max is %s with %i terms\n".printf(lenmax[1].as_rat, lenmax[0]) "Denominator max is %s with %i digits\n".printf(denommax[1].as_rat, denommax[0].size) say denommax[0]  {{out}}  43/48 => 1/2 + 1/3 + 1/16 5/121 => 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 => 34 + 1/8 + 1/95 + 1/14947 + 1/670223480 Term max is 44/53 with 8 terms Denominator max is 8/97 with 150 digits 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665  ## Tcl # Just compute the denominator terms, as the numerators are always 1 proc egyptian {num denom} { set result {} while {$num} {
# Compute ceil($denom/$num) without floating point inaccuracy
set term [expr {$denom /$num + ($denom/$num*$num <$denom)}]
lappend result $term set num [expr {-$denom % $num}] set denom [expr {$denom * $term}] } return$result
}


Demonstrating: {{works with|Tcl|8.6}}

package require Tcl 8.6

proc efrac {fraction} {
scan $fraction "%d/%d" x y set prefix "" if {$x > $y} { set whole [expr {$x / $y}] set x [expr {$x - $whole*$y}]
set prefix "$whole$ + "
}
return $prefix[join [lmap y [egyptian$x $y] {format "1/%lld"$y}] " + "]
}

foreach f {43/48  5/121  2014/59} {
puts "$f = [efrac$f]"
}
set maxt 0
set maxtf {}
set maxd 0
set maxdf {}
for {set d 1} {$d < 100} {incr d} { for {set n 1} {$n < $d} {incr n} { set e [egyptian$n $d] if {[llength$e] >= $maxt} { set maxt [llength$e]
set maxtf $n/$d
}
if {[lindex $e end] >$maxd} {
set maxd [lindex $e end] set maxdf$n/$d } } } puts "$maxtf has maximum number of terms = [efrac $maxtf]" puts "$maxdf has maximum denominator = [efrac $maxdf]"  {{out}}  43/48 = 1/2 + 1/3 + 1/16 5/121 = 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 = [34] + 1/8 + 1/95 + 1/14947 + 1/670223480 8/97 has maximum number of terms = 1/13 + 1/181 + 1/38041 + 1/1736503177 + 1/3769304102927363485 + 1/18943537893793408504192074528154430149 + 1/538286441900380211365817285104907086347439746130226973253778132494225813153 + 1/579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665 8/97 has maximum denominator = 1/13 + 1/181 + 1/38041 + 1/1736503177 + 1/3769304102927363485 + 1/18943537893793408504192074528154430149 + 1/538286441900380211365817285104907086347439746130226973253778132494225813153 + 1/579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665  Note also that $\tfrac\left\{44\right\}\left\{53\right\}$ also has 8 terms. :$\tfrac\left\{1\right\}\left\{2\right\} + \tfrac\left\{1\right\}\left\{4\right\} + \tfrac\left\{1\right\}\left\{13\right\} + \tfrac\left\{1\right\}\left\{307\right\} + \tfrac\left\{1\right\}\left\{120871\right\} + \tfrac\left\{1\right\}\left\{20453597227\right\} + \tfrac\left\{1\right\}\left\{697249399186783218655\right\} + \tfrac\left\{1\right\}\left\{1458470173998990524806872692984177836808420\right\}$ ## Visual Basic .NET {{trans|D}} Imports System.Numerics Imports System.Text Module Module1 Function Gcd(a As BigInteger, b As BigInteger) As BigInteger If b = 0 Then If a < 0 Then Return -a Else Return a End If Else Return Gcd(b, a Mod b) End If End Function Function Lcm(a As BigInteger, b As BigInteger) As BigInteger Return a / Gcd(a, b) * b End Function Public Class Rational Dim num As BigInteger Dim den As BigInteger Public Sub New(n As BigInteger, d As BigInteger) Dim c = Gcd(n, d) num = n / c den = d / c If den < 0 Then num = -num den = -den End If End Sub Public Sub New(n As BigInteger) num = n den = 1 End Sub Public Function Numerator() As BigInteger Return num End Function Public Function Denominator() As BigInteger Return den End Function Public Overrides Function ToString() As String If den = 1 Then Return num.ToString() Else Return String.Format("{0}/{1}", num, den) End If End Function 'Arithmetic operators Public Shared Operator +(lhs As Rational, rhs As Rational) As Rational Return New Rational(lhs.num * rhs.den + rhs.num * lhs.den, lhs.den * rhs.den) End Operator Public Shared Operator -(lhs As Rational, rhs As Rational) As Rational Return New Rational(lhs.num * rhs.den - rhs.num * lhs.den, lhs.den * rhs.den) End Operator 'Comparison operators Public Shared Operator =(lhs As Rational, rhs As Rational) As Boolean Return lhs.num = rhs.num AndAlso lhs.den = rhs.den End Operator Public Shared Operator <>(lhs As Rational, rhs As Rational) As Boolean Return lhs.num <> rhs.num OrElse lhs.den <> rhs.den End Operator Public Shared Operator <(lhs As Rational, rhs As Rational) As Boolean 'a/b < c/d 'ad < bc Dim ad = lhs.num * rhs.den Dim bc = lhs.den * rhs.num Return ad < bc End Operator Public Shared Operator >(lhs As Rational, rhs As Rational) As Boolean 'a/b > c/d 'ad > bc Dim ad = lhs.num * rhs.den Dim bc = lhs.den * rhs.num Return ad > bc End Operator Public Shared Operator <=(lhs As Rational, rhs As Rational) As Boolean Return lhs < rhs OrElse lhs = rhs End Operator Public Shared Operator >=(lhs As Rational, rhs As Rational) As Boolean Return lhs > rhs OrElse lhs = rhs End Operator 'Conversion operators Public Shared Widening Operator CType(ByVal bi As BigInteger) As Rational Return New Rational(bi) End Operator Public Shared Widening Operator CType(ByVal lo As Long) As Rational Return New Rational(lo) End Operator End Class Function Egyptian(r As Rational) As List(Of Rational) Dim result As New List(Of Rational) If r >= 1 Then If r.Denominator() = 1 Then result.Add(r) result.Add(New Rational(0)) Return result End If result.Add(New Rational(r.Numerator / r.Denominator)) r -= result(0) End If Dim modFunc = Function(m As BigInteger, n As BigInteger) Return ((m Mod n) + n) Mod n End Function While r.Numerator() <> 1 Dim q = (r.Denominator() + r.Numerator() - 1) / r.Numerator() result.Add(New Rational(1, q)) r = New Rational(modFunc(-r.Denominator(), r.Numerator()), r.Denominator * q) End While result.Add(r) Return result End Function Function FormatList(Of T)(col As List(Of T)) As String Dim iter = col.GetEnumerator() Dim sb As New StringBuilder sb.Append("[") If iter.MoveNext() Then sb.Append(iter.Current) End If While iter.MoveNext() sb.Append(", ") sb.Append(iter.Current) End While sb.Append("]") Return sb.ToString() End Function Sub Main() Dim rs = {New Rational(43, 48), New Rational(5, 121), New Rational(2014, 59)} For Each r In rs Console.WriteLine("{0} => {1}", r, FormatList(Egyptian(r))) Next Dim lenMax As Tuple(Of ULong, Rational) = Tuple.Create(0UL, New Rational(0)) Dim denomMax As Tuple(Of BigInteger, Rational) = Tuple.Create(New BigInteger(0), New Rational(0)) Dim query = (From i In Enumerable.Range(1, 100) From j In Enumerable.Range(1, 100) Select New Rational(i, j)).Distinct().ToList() For Each r In query Dim e = Egyptian(r) Dim eLen As ULong = e.Count Dim eDenom = e.Last().Denominator() If eLen > lenMax.Item1 Then lenMax = Tuple.Create(eLen, r) End If If eDenom > denomMax.Item1 Then denomMax = Tuple.Create(eDenom, r) End If Next Console.WriteLine("Term max is {0} with {1} terms", lenMax.Item2, lenMax.Item1) Dim dStr = denomMax.Item1.ToString() Console.WriteLine("Denominator max is {0} with {1} digits {2}...{3}", denomMax.Item2, dStr.Length, dStr.Substring(0, 5), dStr.Substring(dStr.Length - 5, 5)) End Sub End Module  {{out}} 43/48 => [1/2, 1/3, 1/16] 5/121 => [1/25, 1/757, 1/763309, 1/873960180913, 1/1527612795642093418846225] 2014/59 => [34, 1/8, 1/95, 1/14947, 1/670223480] Term max is 97/53 with 9 terms Denominator max is 8/97 with 150 digits 57950...89665  ## zkl {{trans|Tcl}} # Just compute the denominator terms, as the numerators are always 1 fcn egyptian(num,denom){ result,t := List(),Void; t,num=num.divr(denom); // reduce fraction if(t) result.append(T(t)); // signal t isn't a denominator while(num){ # Compute ceil($denom/\$num) without floating point inaccuracy
term:=denom/num + (denom/num*num < denom);
result.append(term);
z:=denom%num;
num=(if(z) num-z else 0);
denom*=term;
}
result
}
fcn efrac(fraction){  // list to string, format list of denominators
fraction.pump(List,fcn(denom){
if(denom.isType(List)) denom[0]
else 		     String("1/",denom);
}).concat(" + ")
}

foreach n,d in (T(T(43,48), T(5,121), T(2014,59))){
println("%s/%s --> %s".fmt(n,d, egyptian(n,d):efrac(_)));
}


{{out}}


43/48 --> 1/2 + 1/3 + 1/16
5/121 --> 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1025410058030422033
2014/59 --> 34 + 1/8 + 1/95 + 1/14947 + 1/670223480



For the big denominators, use GMP (Gnu Multi Precision).

var [const] BN=Import("zklBigNum");  // libGMP
lenMax,denomMax := List(0,Void),List(0,Void);
foreach n,d in (Walker.cproduct([1..99],[1..99])){ // 9801 fractions
e,eLen,eDenom := egyptian(BN(n),BN(d)), e.len(), e[-1];
if(eDenom.isType(List)) eDenom=1;
if(eLen  >lenMax[0])   lenMax.clear(eLen,T(n,d));
if(eDenom>denomMax[0]) denomMax.clear(eDenom,T(n,d));
}
println("Term max is %s/%s with %d terms".fmt(lenMax[1].xplode(), lenMax[0]));
dStr:=denomMax[0].toString();
println("Denominator max is %s/%s with %d digits %s...%s"
.fmt(denomMax[1].xplode(), dStr.len(), dStr[0,5], dStr[-5,*]));


{{out}}


Term max is 97/53 with 9 terms
Denominator max is 8/97 with 150 digits 57950...89665