⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

Many image processing algorithms are defined for [[wp:Grayscale|grayscale]] (or else monochromatic) images.

Define two operations, one to convert a color image to a grayscale image and one for the backward conversion.

To get luminance of a color use the formula recommended by [http://www.cie.co.at/index_ie.html CIE]:

L = 0.2126 × R + 0.7152 × G + 0.0722 × B

When using floating-point arithmetic make sure that rounding errors would not cause run-time problems or else distorted results when calculated luminance is stored as an unsigned integer.

```type Grayscale_Image is array (Positive range <>, Positive range <>) of Luminance;
```

Conversion to a grayscale image:

```function Grayscale (Picture : Image) return Grayscale_Image is
type Extended_Luminance is range 0..10_000_000;
Result : Grayscale_Image (Picture'Range (1), Picture'Range (2));
Color  : Pixel;
begin
for I in Picture'Range (1) loop
for J in Picture'Range (2) loop
Color := Picture (I, J);
Result (I, J) :=
Luminance
(  (  2_126 * Extended_Luminance (Color.R)
+  7_152 * Extended_Luminance (Color.G)
+    722 * Extended_Luminance (Color.B)
)
/  10_000
);
end loop;
end loop;
return Result;
end Grayscale;
```

Conversion to a color image:

```function Color (Picture : Grayscale_Image) return Image is
Result : Image (Picture'Range (1), Picture'Range (2));
begin
for I in Picture'Range (1) loop
for J in Picture'Range (2) loop
Result (I, J) := (others => Picture (I, J));
end loop;
end loop;
return Result;
end Color;
```

## BASIC256

[[Image:BASIC256_greyscale_Mona_Lisa.jpg|right]] [[Image:BASIC256_greysacle_Grey_Mona_lisa.jpg|right]]

```w = 143
h = 188
name\$ = "Mona_Lisa.jpg"
graphsize w,h
fastgraphics

for x = 0 to w-1
for y = 0 to h-1
p = pixel(x,y)
b = p % 256
p = p \256
g = p % 256
p = p \ 256
r = p % 256
l = 0.2126*r + 0.7152*g + 0.0722*b
color rgb(l,l,l)
plot x,y
next y
refresh
next x

imgsave "Grey_"+name\$,"jpg"
```

{{omit from|Batch File}}

## BBC BASIC

{{works with|BBC BASIC for Windows}} This uses the formula for gamma-corrected images, which is more appropriate to this task (see discussion page). [[Image:original_bbc.jpg|right]] [[Image:greyscale_bbc.jpg|right]]

```      Width% = 200
Height% = 200

VDU 23,22,Width%;Height%;8,16,16,128
*display c:\lena

FOR y% = 0 TO Height%-1
FOR x% = 0 TO Width%-1
rgb% = FNgetpixel(x%,y%)
r% = rgb% >> 16
g% = (rgb% >> 8) AND &FF
b% = rgb% AND &FF
l% = INT(0.3*r% + 0.59*g% + 0.11*b% + 0.5)
PROCsetpixel(x%,y%,l%,l%,l%)
NEXT
NEXT y%
END

DEF PROCsetpixel(x%,y%,r%,g%,b%)
COLOUR 1,r%,g%,b%
GCOL 1
LINE x%*2,y%*2,x%*2,y%*2
ENDPROC

DEF FNgetpixel(x%,y%)
LOCAL col%
col% = TINT(x%*2,y%*2)
SWAP ?^col%,?(^col%+2)
= col%
```

## C

Definition/interface for a grayscale image.

```typedef unsigned char luminance;
typedef luminance pixel1[1];
typedef struct {
unsigned int width;
unsigned int height;
luminance *buf;
} grayimage_t;
typedef grayimage_t *grayimage;

grayimage alloc_grayimg(unsigned int, unsigned int);
grayimage tograyscale(image);
image tocolor(grayimage);
```

The same as alloc_img, but for grayscale images.

```grayimage alloc_grayimg(unsigned int width, unsigned int height)
{
grayimage img;
img = malloc(sizeof(grayimage_t));
img->buf = malloc(width*height*sizeof(pixel1));
img->width = width;
img->height = height;
return img;
}
```

Convert from ''color'' image to ''grayscale'' image.

```grayimage tograyscale(image img)
{
unsigned int x, y;
grayimage timg;
double rc, gc, bc, l;
unsigned int ofs;

timg = alloc_grayimg(img->width, img->height);

for(x=0; x < img->width; x++)
{
for(y=0; y < img->height; y++)
{
ofs = (y * img->width) + x;
rc = (double) img->buf[ofs][0];
gc = (double) img->buf[ofs][1];
bc = (double) img->buf[ofs][2];
l = 0.2126*rc + 0.7152*gc + 0.0722*bc;
timg->buf[ofs][0] = (luminance) (l+0.5);
}
}
return timg;
}
```

And back from a ''grayscale'' image to a ''color'' image.

```image tocolor(grayimage img)
{
unsigned int x, y;
image timg;
luminance l;
unsigned int ofs;

timg = alloc_img(img->width, img->height);

for(x=0; x < img->width; x++)
{
for(y=0; y < img->height; y++)
{
ofs = (y * img->width) + x;
l = img->buf[ofs][0];
timg->buf[ofs][0] = l;
timg->buf[ofs][1] = l;
timg->buf[ofs][2] = l;
}
}
return timg;
}
```

'''Notes'''

• tocolor and tograyscale do not free the previous image, so it must be freed normally calling free_img. With a cast we can use the same function also for grayscale images, or we can define something like
```#define free_grayimg(IMG) free_img((image)(IMG))
```
• ''Luminance'' is rounded. Since the C implementation is based on unsigned char (256 possible values per components), L can be at most 255.0 and rounding gives 255, as we expect. Changing the color_component type would only change 256, 255.0 and 255 values here written in something else, the code would work the same.

## C#

To convert TO grayscale:

```
Bitmap tImage = new Bitmap("spectrum.bmp");

for (int x = 0; x < tImage.Width; x++)
{
for (int y = 0; y < tImage.Height; y++)
{
Color tCol = tImage.GetPixel(x, y);

// L = 0.2126·R + 0.7152·G + 0.0722·B
double L = 0.2126 * tCol.R + 0.7152 * tCol.G + 0.0722 * tCol.B;
tImage.SetPixel(x, y, Color.FromArgb(Convert.ToInt32(L), Convert.ToInt32(L), Convert.ToInt32(L)));
}
}

// Save
tImage.Save("spectrum2.bmp");

```

```
(import '[java.io File]
'[javax.imageio ImageIO]
'[java.awt Color]
'[java.awt.image BufferedImage]))

(defn rgb-to-gray [color-image]
(let [width (.getWidth color-image)]
(partition width
(for [x (range width)
y (range (.getHeight color-image))]
(let [rgb (.getRGB color-image x y)
rgb-object (new Color rgb)
r (.getRed rgb-object)
g (.getGreen rgb-object)
b (.getBlue rgb-object)
a (.getAlpha rgb-object)]
;Compute the grayscale value an return it: L = 0.2126·R + 0.7152·G + 0.0722·B
(+ (* r 0.2126) (* g 0.7152) (* b 0.0722)))))))

(defn write-matrix-to-image [matrix filename]
(ImageIO/write
(let [height (count matrix)
width (count (first matrix))
output-image (new BufferedImage width height BufferedImage/TYPE_BYTE_GRAY)]
(doseq [row-index    (range height)
column-index (range width)]
(.setRGB output-image column-index row-index (.intValue (nth (nth matrix row-index) column-index))))
output-image)
"png"
(new File filename)))

(println
(write-matrix-to-image
(rgb-to-gray
"test-gray-cloj.png"))

```

## Common Lisp

Use the function rgb-to-gray-image to convert a rgb-image as loaded by the function defined [[Bitmap/Read a PPM file#Common Lisp]]. The package identifier assumes that you have the package as defined in [[Basic bitmap storage#Common Lisp]]. With the function grayscale-image-to-pgm-file it is possible to write out the gray image as pgm file which can then be further processed.

```
(in-package #:rgb-pixel-buffer)

(defun rgb-to-gray-image (rgb-image)
(flet ((rgb-to-gray (rgb-value)
(round (+ (* 0.2126 (rgb-pixel-red rgb-value))
(* 0.7152 (rgb-pixel-green rgb-value))
(* 0.0722 (rgb-pixel-blue rgb-value))))))
(let ((gray-image (make-array (array-dimensions rgb-image) :element-type '(unsigned-byte 8))))
(dotimes (i (array-total-size rgb-image))
(setf (row-major-aref gray-image i) (rgb-to-gray (row-major-aref rgb-image i))))
gray-image)))

(export 'rgb-to-gray-image)

(defun grayscale-image-to-pgm-file (image file-name &optional (max-value 255))
(with-open-file (p file-name :direction :output
:if-exists :supersede)
(format p "P2 ~&~A ~A ~&~A" (array-dimension image 1) (array-dimension image 0) max-value)
(dotimes (i (array-total-size image))
(print (row-major-aref image i) p))))

(export 'grayscale-image-to-pgm-file)

```

## D

This example uses the bitmap module defined in the [[Bitmap]] Task page.

```module grayscale_image;

import core.stdc.stdio, std.array, std.algorithm, std.string, std.ascii;
public import bitmap;

struct Gray {
ubyte c;
enum black = typeof(this)(0);
enum white = typeof(this)(255);
alias c this;
}

Image!Color loadPGM(Color)(Image!Color img, in string fileName) {
static int readNum(FILE* f) nothrow @nogc {
int n;
while (!fscanf(f, "%d ", &n)) {
if ((n = fgetc(f)) == '#') {
while ((n = fgetc(f)) != '\n')
if (n == EOF)
return 0;
} else
return 0;
}
return n;
}

if (img is null)
img = new Image!Color();

auto fin = fopen(fileName.toStringz(), "rb");
scope(exit) if (fin) fclose(fin);
if (!fin)
throw new Exception("Can't open input file.");

if (fgetc(fin) != 'P' ||
fgetc(fin) != '5' ||
!isWhite(fgetc(fin)))
throw new Exception("Not a PGM (PPM P5) image.");

if (nc <= 0 || nr <= 0 || maxVal <= 0)
throw new Exception("Wrong input image sizes.");
img.allocate(nc, nr);
auto pix = new ubyte[img.image.length];

immutable count = fread(pix.ptr, 1, nc * nr, fin);
if (count != nc * nr)
throw new Exception("Wrong number of items read.");

pix.copy(img.image);
return img;
}

void savePGM(Color)(in Image!Color img, in string fileName)
in {
assert(img !is null);
assert(!fileName.empty);
assert(img.nx > 0 && img.ny > 0 &&
img.image.length == img.nx * img.ny,
"Wrong image.");
} body {
auto fout = fopen(fileName.toStringz(), "wb");
if (fout == null)
throw new Exception("File can't be opened.");
fprintf(fout, "P5\n%d %d\n255\n", img.nx, img.ny);
auto pix = new ubyte[img.image.length];
foreach (i, ref p; pix)
p = cast(typeof(pix[0]))img.image[i];
immutable count = fwrite(pix.ptr, ubyte.sizeof,
img.nx * img.ny, fout);
if (count != img.nx * img.ny)
new Exception("Wrong number of items written.");
fclose(fout);
}

Gray lumCIE(in RGB c) pure nothrow @nogc {
return Gray(cast(ubyte)(0.2126 * c.r +
0.7152 * c.g +
0.0722 * c.b + 0.5));
}

Gray lumAVG(in RGB c) pure nothrow @nogc {
return Gray(cast(ubyte)(0.3333 * c.r +
0.3333 * c.g +
0.3333 * c.b + 0.5));
}

Image!Gray rgb2grayImage(alias Conv=lumCIE)(in Image!RGB im) nothrow {
auto result = new typeof(return)(im.nx, im.ny);
foreach (immutable i, immutable rgb; im.image)
result.image[i] = Conv(rgb);
return result;
}

Image!RGB gray2rgbImage(in Image!Gray im) nothrow {
auto result = new typeof(return)(im.nx, im.ny);
foreach (immutable i, immutable gr; im.image)
result.image[i] = RGB(gr, gr, gr);
return result;
}

version (grayscale_image_main) {
void main() {
auto im1 = new Image!Gray;
gray2rgbImage(im1).savePPM6("lena_rgb.ppm");

auto img2 = new Image!RGB;
img2.rgb2grayImage.savePGM("quantum_frog_grey.pgm");
}
}
```

## Euler Math Toolbox

>A=loadrgb("mona.jpg"); >insrgb(A); >function grayscale (A) ... \${r,g,b}=getrgb(A); \$c=0.2126*r+0.7152*g+0.0722*b; \$return rgb(c,c,c); \$endfunction >insrgb(grayscale(A)); >insrgb(A|grayscale(A));
```

## Erlang

The code below extends the erlang module on [[Bitmap]] task. This module supports RGB and grayscale modes. RGB colors are specified as {rgb, R, G, B} and saved as bytes into an array. Grayscale colors are likewise specified as {gray, L} where L is luminance.

```erlang
-module(ros_bitmap).

-export([new/2, fill/2, set_pixel/3, get_pixel/2, convert/2]).

-record(bitmap, {
mode = rgb,
pixels = nil,
shape = {0, 0}
}).

tuple_to_bytes({rgb, R, G, B}) ->
<<R:8, G:8, B:8>>;
tuple_to_bytes({gray, L}) ->
<<L:8>>.

bytes_to_tuple(rgb, Bytes) ->
<<R:8, G:8, B:8>> = Bytes,
{rgb, R, G, B};
bytes_to_tuple(gray, Bytes) ->
<<L:8>> = Bytes,
{gray, L}.

new(Width, Height) ->
new(Width, Height, {rgb, 0, 0, 0}).

new(Width, Height, rgb) ->
new(Width, Height, {rgb, 0, 0, 0});

new(Width, Height, gray) ->
new(Width, Height, {gray, 0, 0, 0});

new(Width, Height, ColorTuple) when is_tuple(ColorTuple) ->
[Mode|Components] = tuple_to_list(ColorTuple),
Bytes = list_to_binary(Components),
#bitmap{
pixels=array:new(Width * Height, {default, Bytes}),
shape={Width, Height},
mode=Mode}.

fill(#bitmap{shape={Width, Height}, mode=Mode}, ColorTuple)
when element(1, ColorTuple) =:= Mode ->
new(Width, Height, ColorTuple).

set_pixel(#bitmap{pixels=Pixels, shape={Width, _Height}, mode=Mode}=Bitmap,
{at, X, Y}, ColorTuple) when  element(1, ColorTuple) =:= Mode ->
Index = X + Y * Width,
Bitmap#bitmap{pixels=array:set(Index, tuple_to_bytes(ColorTuple), Pixels)}.

get_pixel(#bitmap{pixels=Pixels, shape={Width, _Height}, mode=Mode},
{at, X, Y}) ->
Index = X + Y * Width,
Bytes = array:get(Index, Pixels),
bytes_to_tuple(Mode, Bytes).

luminance(<<R:8, G:8, B:8>>) ->
<<(trunc(R * 0.2126 + G * 0.7152 + B * 0.0722))>>.

%% convert from rgb to grayscale
convert(#bitmap{pixels=Pixels, mode=rgb}=Bitmap, gray) ->
Bitmap#bitmap{
pixels=array:map(fun(_I, Pixel) ->
luminance(Pixel) end, Pixels),
mode=gray};

%% convert from grayscale to rgb
convert(#bitmap{pixels=Pixels, mode=gray}=Bitmap, rgb)->
Bitmap#bitmap{
pixels=array:map(fun(_I, <<L:8>>) -> <<L:8, L:8, L:8>> end, Pixels),
mode=rgb};

%% no conversion if the mode is the same with the bitmap.
convert(#bitmap{mode=Mode}=Bitmap, Mode) ->
Bitmap.

```

## Euphoria

```function to_gray(sequence image)
sequence color
for i = 1 to length(image) do
for j = 1 to length(image[i]) do
color = and_bits(image[i][j], {#FF0000,#FF00,#FF}) /
{#010000,#0100,#01} -- unpack color triple
image[i][j] = floor(0.2126*color[1] + 0.7152*color[2] + 0.0722*color[3])
end for
end for
return image
end function

function to_color(sequence image)
for i = 1 to length(image) do
for j = 1 to length(image[i]) do
image[i][j] = image[i][j]*#010101
end for
end for
return image
end function
```

## FBSL

24-bpp BMP-format P.O.T.-size image solution: [[Image:FBSLLena.png|right]]

```DIM colored = ".\LenaClr.bmp", grayscale = ".\LenaGry.bmp"
DIM head, tail, r, g, b, l, ptr, blobsize = 54 ' sizeof BMP file headers

FILEGET(FILEOPEN(colored, BINARY), FILELEN(colored)): FILECLOSE(FILEOPEN) ' load buffer
head = @FILEGET + blobsize: tail = @FILEGET + FILELEN ' set loop bounds

FOR ptr = head TO tail STEP 3 ' transform color triplets
b = PEEK(ptr + 0, 1) ' read Windows colors stored in BGR order
g = PEEK(ptr + 1, 1)
r = PEEK(ptr + 2, 1)
l = 0.2126 * r + 0.7152 * g + 0.0722 * b ' derive luminance
SETMEM(FILEGET, RGB(l, l, l), ptr - head + blobsize, 3) ' write grayscale
NEXT

FILEPUT(FILEOPEN(grayscale, BINARY_NEW), FILEGET): FILECLOSE(FILEOPEN) ' save buffer
```

In [https://wiki.formulae.org/Grayscale_image this] page you can see the solution of this task.

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text ([http://wiki.formulae.org/Editing_F%C5%8Drmul%C3%A6_expressions more info]). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.

The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.

## Forth

```\ grayscale bitmap (without word-alignment for scan lines)

\ bdim, bwidth, bdata all work with graymaps

: graymap ( w h -- gmp )
2dup * bdata allocate throw
dup >r 2! r> ;

: gxy ( x y gmp -- addr )
dup bwidth rot * rot + swap bdata + ;

: g@ ( x y gmp -- c ) gxy c@ ;
: g! ( c x y bmp -- ) gxy c! ;

: gfill ( c gmp -- )
dup bdata swap bdim * rot fill ;

: gshow ( gmp -- )
dup bdim
0 do cr
dup 0 do
over i j rot g@ if [char] * emit else space then
loop
loop
2drop ;

\ RGB <-> Grayscale
: lum>rgb ( 0..255 -- pixel )
dup 8 lshift or
dup 8 lshift or ;

: pixel>rgb ( pixel -- r g b )
256 /mod 256 /mod ;
: rgb>lum ( pixel -- 0..255 )
pixel>rgb
722 *   swap
7152 * + swap
2126 * + 10000 / ;

: bitmap>graymap ( bmp -- gmp )
dup bdim graymap
dup bdim nip 0 do
dup bwidth 0 do
over i j rot b@ rgb>lum
over i j rot g!
loop
loop nip ;

: graymap>bitmap ( gmp -- bmp )
dup bdim bitmap
dup bdim nip 0 do
dup bwidth 0 do
over i j rot g@ lum>rgb
over i j rot b!
loop
loop nip ;
```

## Fortran

(These fragments should be added to RCImageBasic module, see [[Basic bitmap storage#Fortran|Basic bitmap storage]])

First let's define a new type; the sc stands for Single Channel, which can be luminance (as it is here).

```type scimage
integer, dimension(:,:), pointer :: channel
integer :: width, height
end type scimage
```

In order to allow proper overloading, the following subroutines of the [[Basic bitmap storage#Fortran|storage]] should be renamed appending the _rgb suffix: valid_image, inside_image, alloc_img, free_img, fill_img, get_pixel, put_pixel, init_img. The ''single channel'' version would be named with the _sc suffix, then we should define the proper interfaces to use the already written code as before. Here there are only the interfaces and subroutines needed for the task.

```interface alloc_img
module procedure alloc_img_rgb, alloc_img_sc
end interface

interface free_img
module procedure free_img_rgb, free_img_sc
end interface
```

Now we can define useful interfaces and subroutines more task-related:

```interface assignment(=)
module procedure rgbtosc, sctorgb
end interface
```
```subroutine alloc_img_sc(img, w, h)
type(scimage) :: img
integer, intent(in) :: w, h

allocate(img%channel(w, h))
img%width = w
img%height = h
end subroutine alloc_img_sc

subroutine free_img_sc(img)
type(scimage) :: img

if ( associated(img%channel) ) deallocate(img%channel)
end subroutine free_img_sc

subroutine rgbtosc(sc, colored)
type(rgbimage), intent(in) :: colored
type(scimage), intent(inout) :: sc

if ( ( .not. valid_image(sc) ) .and. valid_image(colored) ) then
call alloc_img(sc, colored%width, colored%height)
end if

if ( valid_image(sc) .and. valid_image(colored) ) then
sc%channel = floor(0.2126*colored%red + 0.7152*colored%green + &
0.0722*colored%blue)
end if

end subroutine rgbtosc

subroutine sctorgb(colored, sc)
type(scimage), intent(in) :: sc
type(rgbimage), intent(inout) :: colored

if ( ( .not. valid_image(colored) ) .and. valid_image(sc) ) then
call alloc_img_rgb(colored, sc%width, sc%height)
end if

if ( valid_image(sc) .and. valid_image(colored) ) then
colored%red = sc%channel
colored%green = sc%channel
colored%blue = sc%channel
end if

end subroutine sctorgb
```

'''Usage example''' (fragment) which can be used to convert from ''rgb'' image to ''grayscale'' image and back (since we only can output the ''rgb'' kind):

```type(scimage) :: gray
type(rgbimage) :: animage
! ... here we "load" or create animage
! while gray must be created or initialized to null
! or errors can arise...
call init_img(gray)
gray = animage
animage = gray
call output_ppm(an_unit, animage)
```

## Go

```package raster

import (
"math"
"math/rand"
)

// Grmap parallels Bitmap, but with an element type of uint16
// in place of Pixel.
type Grmap struct {
rows, cols int
px         []uint16
pxRow      [][]uint16
}

// NewGrmap constructor.
func NewGrmap(x, y int) (b *Grmap) {
g := &Grmap{
Comments: []string{creator}, // creator a const in bitmap source file
rows:     y,
cols:     x,
px:       make([]uint16, x*y),
pxRow:    make([][]uint16, y),
}
x0, x1 := 0, x
for i := range g.pxRow {
g.pxRow[i] = g.px[x0:x1]
x0, x1 = x1, x1+x
}
return g
}

func (b *Grmap) Extent() (cols, rows int) {
return b.cols, b.rows
}

func (g *Grmap) Fill(c uint16) {
for i := range g.px {
g.px[i] = c
}
}

func (g *Grmap) SetPx(x, y int, c uint16) bool {
defer func() { recover() }()
g.pxRow[y][x] = c
return true
}

func (g *Grmap) GetPx(x, y int) (uint16, bool) {
defer func() { recover() }()
return g.pxRow[y][x], true
}

// Grmap method of Bitmap, converts (color) Bitmap to (grayscale) Grmap
func (b *Bitmap) Grmap() *Grmap {
g := NewGrmap(b.cols, b.rows)
for i, p := range b.px {
g.px[i] = uint16((int64(p.R)*2126 + int64(p.G)*7152 + int64(p.B)*722) *
math.MaxUint16 / (math.MaxUint8 * 10000))
}
return g
}

// Bitmap method Grmap, converts Grmap to Bitmap.  All pixels in the resulting
// color Bitmap will be (very nearly) shades of gray.
func (g *Grmap) Bitmap() *Bitmap {
b := NewBitmap(g.cols, g.rows)
for i, p := range g.px {
roundedSum := int(p) * 3 * math.MaxUint8 / math.MaxUint16
rounded := uint8(roundedSum / 3)
remainder := roundedSum % 3
b.px[i].R = rounded
b.px[i].G = rounded
b.px[i].B = rounded
if remainder > 0 {
odd := rand.Intn(3)
switch odd + (remainder * 3) {
case 3:
b.px[i].R++
case 4:
b.px[i].G++
case 5:
b.px[i].B++
case 6:
b.px[i].G++
b.px[i].B++
case 7:
b.px[i].R++
b.px[i].B++
case 8:
b.px[i].R++
b.px[i].G++
}
}
}
return b
}
```

```module Bitmap.Gray(module Bitmap.Gray) where

import Bitmap

newtype Gray = Gray Int deriving (Eq, Ord)

instance Color Gray where
luminance (Gray x) = x
black = Gray 0
white = Gray 255
toNetpbm = map \$ toEnum . luminance
fromNetpbm = map \$ Gray . fromEnum
netpbmMagicNumber _ = "P5"
netpbmMaxval _ = "255"

toGrayImage :: Color c => Image s c -> ST s (Image s Gray)
toGrayImage = mapImage \$ Gray . luminance
```

A Gray image can be converted to an RGB image with Bitmap.RGB.toRGBImage, defined [[Basic bitmap storage|here]].

## J

Color bitmap structure and basic functions for manipulations with it are described [[Basic_bitmap_storage#J|here]].

Grayscale image is stored as two-dimensional array of luminance values. Allowed luminance scale is the same as for the color bitmap; the functions below are neutral to scale.

```NB. converts the image to grayscale according to formula
NB. L = 0.2126*R + 0.7152*G + 0.0722*B
toGray=: [: <. +/ .*"1&0.2126 0.7152 0.0722

NB. converts grayscale image to the color image, with all channels equal
toColor=: 3 & \$"0
```

Example:

```

## Java

```java
void convertToGrayscale(final BufferedImage image){
for(int i=0; i<image.getWidth(); i++){
for(int j=0; j<image.getHeight(); j++){
int color = image.getRGB(i,j);

int alpha = (color >> 24) & 255;
int red = (color >> 16) & 255;
int green = (color >> 8) & 255;
int blue = (color) & 255;

final int lum = (int)(0.2126 * red + 0.7152 * green + 0.0722 * blue);

alpha = (alpha << 24);
red = (lum << 16);
green = (lum << 8);
blue = lum;

color = alpha + red + green + blue;

image.setRGB(i,j,color);
}
}
}

```

## JavaScript

HTML 5 Demonstration: https://repl.it/repls/NiceFaroffRockrat

```
function toGray(img) {
let cnv = document.getElementById("canvas");
let ctx = cnv.getContext('2d');
let imgW = img.width;
let imgH = img.height;
cnv.width = imgW;
cnv.height = imgH;

ctx.drawImage(img, 0, 0);
let pixels = ctx.getImageData(0, 0, imgW, imgH);
for (let y = 0; y < pixels.height; y ++) {
for (let x = 0; x < pixels.width; x ++) {
let i = (y * 4) * pixels.width + x * 4;
let avg = (pixels.data[i] + pixels.data[i + 1] + pixels.data[i + 2]) / 3;

pixels.data[i] = avg;
pixels.data[i + 1] = avg;
pixels.data[i + 2] = avg;
}
}
ctx.putImageData(pixels, 0, 0, 0, 0, pixels.width, pixels.height);
return cnv.toDataURL();
}

```

## Julia

```
using Color, Images, FixedPointNumbers

const M_RGB_Y = reshape(Color.M_RGB_XYZ[2,:], 3)

function rgb2gray(img::Image)
g = red(img)*M_RGB_Y[1] + green(img)*M_RGB_Y[2] + blue(img)*M_RGB_Y[3]
g = clamp(g, 0.0, 1.0)
return grayim(g)
end

function gray2rgb(img::Image)
colorspace(img) == "Gray" || return img
g = map((x)->RGB{Ufixed8}(x, x, x), img.data)
return Image(g, spatialorder=spatialorder(img))
end

imb = rgb2gray(ima)
imc = gray2rgb(imb)
imwrite(imc, "grayscale_image_rc.png")

```

Rounding errors are unlikely to be an issue for `rgb2gray`. The calculation of `g` promotes it to the literal float type (typically `Float64`).

'''A More Idiomatic Approach'''

```
using Color, Images, FixedPointNumbers

imb = convert(Image{Gray{Ufixed8}}, ima)
imwrite(imb, "grayscale_image_julia.png")

```

{{output}} I didn't find a colorful image that I was comfortable modifying and sharing, so I'm omitting the image files from my solution to this task. Try out these [http://r0k.us/graphics/kodak/ images] for something to work with. Although these images are intended for image processing testing and development and are said to be available for unrestricted use, I could find no clear and definitive statement of their usage rights.

The results of the two approaches (according to task, ''rc'', and idiomatic, ''julia'') are indistinguishable except perhaps by close examination. The ''julia'' file is native grayscale, and the ''rc'' file is RGB that shows only grays.

The task description is silent on the issue of companded sRGB versus linear RGB. Most images are actually sRGB, and strictly speaking, the transformation to get Y from RGB is applicable to linear RGB. I imagine that, unlike the ''rc'' version, the ''julia'' version reverses compansion prior to applying the CIE transformation to extract luminance from RGB.

## Kotlin

This just converts a colored image to grayscale.

As it's not possible to recover the original colored image (because different combinations of RGB values could have produced the same luminance), I have not bothered with the reverse operation.

```// version 1.2.10

import java.io.File
import java.awt.image.BufferedImage
import javax.imageio.ImageIO

fun BufferedImage.toGrayScale() {
for (x in 0 until width) {
for (y in 0 until height) {
var argb  = getRGB(x, y)
val alpha = (argb shr 24) and 0xFF
val red   = (argb shr 16) and 0xFF
val green = (argb shr  8) and 0xFF
val blue  =  argb and 0xFF
val lumin = (0.2126 * red + 0.7152 * green + 0.0722 * blue).toInt()
argb = (alpha shl 24) or (lumin shl 16) or (lumin shl 8) or lumin
setRGB(x, y, argb)
}
}
}

fun main(args: Array<String>) {
val image = ImageIO.read(File("bbc.jpg")) // using BBC BASIC image
image.toGrayScale()
val grayFile = File("bbc_gray.jpg")
ImageIO.write(image, "jpg", grayFile)
}
```

{{out}}

```
Images same as BBC BASIC entry

```

## Lingo

```on rgbToGrayscaleImageFast (img)
res = image(img.width, img.height, 8)
res.paletteRef = #grayScale
res.copyPixels(img, img.rect, img.rect)
return res
end

on rgbToGrayscaleImageCustom (img)
res = image(img.width, img.height, 8)
res.paletteRef = #grayScale
repeat with x = 0 to img.width-1
repeat with y = 0 to img.height-1
c = img.getPixel(x,y)
n = c.red*0.2126 + c.green*0.7152 + c.blue*0.0722
res.setPixel(x,y, color(256-n))
end repeat
end repeat
return res
end
```

## Lua

```function ConvertToGrayscaleImage( bitmap )
local size_x, size_y = #bitmap, #bitmap[1]
local gray_im = {}

for i = 1, size_x do
gray_im[i] = {}
for j = 1, size_y do
gray_im[i][j] = math.floor( 0.2126*bitmap[i][j][1] + 0.7152*bitmap[i][j][2] + 0.0722*bitmap[i][j][3] )
end
end

return gray_im
end

function ConvertToColorImage( gray_im )
local size_x, size_y = #gray_im, #gray_im[1]
local bitmap = Allocate_Bitmap( size_x, size_y )         -- this function is defined at http://rosettacode.org/wiki/Basic_bitmap_storage#Lua

for i = 1, size_x do
for j = 1, size_y do
bitmap[i][j] = { gray_im[i][j], gray_im[i][j], gray_im[i][j] }
end
end

return bitmap
end
```

## Maple

Maple has builtin command for conversion from RGB to Grayscale image: ImageTools:-ToGrayScale, which uses gray = 0.30 red + 0.59 green + 0.11 blue, the following implementation uses the CIE formula. Note that the conversion back from GrayScale to RGB uses Maple's builtin command: ImageTools:-ToRGB.

```with(ImageTools):
#conversion forward
dimensions:=[upperbound(img)];
gray := Matrix(dimensions[1], dimensions[2]);
for i from 1 to dimensions[1] do
for j from 1 to dimensions[2] do
gray[i,j] := 0.2126 * img[i,j,1] + 0.7152*img[i,j,2] + 0.0722*img[i,j,3]:
end do:
end do:
#display the result
Embed(Create(gray)):
#conversion backward
x:=Create(gray);
ToRGB(x);
#display the result
Embed(x);
```

=={{header|Mathematica}} / {{header|Wolfram Language}}== Mathematica has a built-in grayscale conversion function called "ColorConvert". This example does not use it since it appears the luminance calculation is different from the CIE spec. Grayscale to RGB "conversion" just changes the single channel grayscale image to a triple channel image.

```toGrayscale[rgb_Image] := ImageApply[#.{0.2126, 0.7152, 0.0722}&, rgb]
toFakeRGB[L_Image] := ImageApply[{#, #, #}&, L]
```

## MATLAB

Built in colour to grayscale converter uses the following forumula: 0.2989R + 0.5870G + 0.1140*B

```function [grayImage] = colortograyscale(inputImage)
grayImage = rgb2gray(inputImage);
```

## OCaml

Conversion to a grayscale image:

```let to_grayscale ~img:(_, r_channel, g_channel, b_channel) =
let width = Bigarray.Array2.dim1 r_channel
and height = Bigarray.Array2.dim2 r_channel in

let gray_channel =
let kind = Bigarray.int8_unsigned
and layout = Bigarray.c_layout
in
(Bigarray.Array2.create kind layout width height)
in
for y = 0 to pred height do
for x = 0 to pred width do
let r = r_channel.{x,y}
and g = g_channel.{x,y}
and b = b_channel.{x,y} in
let v = (2_126 * r +  7_152 * g + 722 * b) / 10_000 in
gray_channel.{x,y} <- v;
done;
done;
(gray_channel)
```

Conversion to a color image:

```let to_color ~img:gray_channel =
let width = Bigarray.Array2.dim1 gray_channel
and height = Bigarray.Array2.dim2 gray_channel in
let all_channels =
let kind = Bigarray.int8_unsigned
and layout = Bigarray.c_layout
in
Bigarray.Array3.create kind layout 3 width height
in
let r_channel = Bigarray.Array3.slice_left_2 all_channels 0
and g_channel = Bigarray.Array3.slice_left_2 all_channels 1
and b_channel = Bigarray.Array3.slice_left_2 all_channels 2
in
Bigarray.Array2.blit gray_channel r_channel;
Bigarray.Array2.blit gray_channel g_channel;
Bigarray.Array2.blit gray_channel b_channel;
(all_channels,
r_channel,
g_channel,
b_channel)
```

and functions to get/set a pixel:

```let gray_get_pixel_unsafe (gray_channel) =
(fun x y -> gray_channel.{x,y})

let gray_put_pixel_unsafe (gray_channel) v =
(fun x y -> gray_channel.{x,y} <- v)
```

## Octave

'''Use package''': image

```function [grayImage] = colortograyscale(inputImage)
grayImage = rgb2gray(inputImage);
```

Differently from [[Grayscale image#MATLAB|MATLAB]], the grayscale is computed as mean of the three RGB values. Changing this non-optimal behaviour is a matter of fixing three lines in the rgb2gray.m file; since it's a GPL-ed code, here it is a semplified version (error checking, usage help, argument checking removed)

```function gray = rgb2gray (rgb)
switch(class(rgb))
case "double"
gray = luminance(rgb);
case "uint8"
gray = uint8(luminance(rgb));
case "uint16"
gray = uint16(luminance(rgb));
endswitch
endfunction

function lum = luminance(rgb)
lum = 0.2126*rgb(:,:,1) + 0.7152*rgb(:,:,2) + 0.0722*rgb(:,:,3);
endfunction
```

Original code of the rgb2gray.m in the image package version 1.0.8 is by Kai Habel (under the GNU General Public License)

## Oz

We define a "graymap" as a two-dimensional array of floats. In module `"Grayscale.oz"`, we implement conversion functions from and to bitmaps:

```functor
import
Array2D
export
ToGraymap
FromGraymap
define
fun {ToGraymap bitmap(Arr)}
graymap({Array2D.map Arr Luminance})
end

fun {Luminance Color}
F = {Record.map Color Int.toFloat}
in
0.2126*F.1 + 0.7152*F.2 + 0.0722*F.3
end

fun {FromGraymap graymap(Arr)}
bitmap({Array2D.map Arr ToColor})
end

fun {ToColor Lum}
L = {Float.toInt Lum}
in
color(L L L)
end
end
```

## Perl

Since we are using Imlib2, this one '''does''' '''not''' implement really a gray-scale (single channel) storage; it only ''converts'' an RGB image to an RGB image with the same three colour components for each pixel (which result in a gray-scale-like image)

```#! /usr/bin/perl

use strict;
use Image::Imlib2;

sub tograyscale
{
my \$img = shift;
my \$gimg = Image::Imlib2->new(\$img->width, \$img->height);
for ( my \$x = 0; \$x < \$gimg->width; \$x++ ) {
for ( my \$y = 0; \$y < \$gimg->height; \$y++ ) {
my ( \$r, \$g, \$b, \$a ) = \$img->query_pixel(\$x, \$y);
my \$gray = int(0.2126 * \$r + 0.7152 * \$g + 0.0722 * \$b);
\$gimg->set_color(\$gray, \$gray, \$gray, 255);
\$gimg->draw_point(\$x, \$y);
}
}
return \$gimg;
}

my \$gscale = tograyscale(\$animage);
\$gscale->set_quality(80);
\$gscale->save("Lennagray.jpg");

exit 0;
```

## Perl 6

This script expects to be fed a P6 .ppm file name at the command line. It will convert it to grey scale and save it as a binary portable grey map (P5 .pgm) file.

```sub MAIN (\$filename = 'default.ppm') {

my \$in = open(\$filename, :r, :enc<iso-8859-1>) or die \$in;

my (\$type, \$dim, \$depth) = \$in.lines[^3];

my \$outfile = \$filename.subst('.ppm', '.pgm');
my \$out = open(\$outfile, :w, :enc<iso-8859-1>) or die \$out;

\$out.say("P5\n\$dim\n\$depth");

for \$in.lines.ords -> \$r, \$g, \$b {
my \$gs = \$r * 0.2126 + \$g * 0.7152 + \$b * 0.0722;
\$out.print: chr(\$gs min 255);
}

\$in.close;
\$out.close;
}
```

Using the .ppm file from the [[Bitmap/Write a PPM file#Perl 6|Write a PPM file]] task:

Original: [[File:Ppm-perl6.png]] Grey Scale: [[File:Pgm-g2-perl6.png]]

## Phix

```function to_gray(sequence image)
sequence color
for i=1 to length(image) do
for j=1 to length(image[i]) do
-- unpack color triple
color = sq_div(sq_and_bits(image[i][j], {#FF0000,#FF00,#FF}),
{#010000,#0100,#01})
image[i][j] = floor(0.2126*color[1] + 0.7152*color[2] + 0.0722*color[3])*#010101
end for
end for
return image
end function

img = to_gray(img)
```

## PHP

Uses the [[Write ppm file#PHP|Bitmap class]] defined for writing a PPM file

```class BitmapGrayscale extends Bitmap {
public function toGrayscale(){
for (\$i = 0; \$i < \$this->h; \$i++){
for (\$j = 0; \$j < \$this->w; \$j++){
\$l = (\$this->data[\$j][\$i][0] * 0.2126)
+ (\$this->data[\$j][\$i][1] * 0.7152)
+ (\$this->data[\$j][\$i][2] * 0.0722);
\$l = round(\$l);
\$this->data[\$j][\$i] = array(\$l,\$l,\$l);
}
}
}
}

\$b = new BitmapGrayscale(16,16);
\$b->fill(0,0,null,null, array(255,255,0));
\$b->setPixel(0, 15, array(255,0,0));
\$b->setPixel(0, 14, array(0,255,0));
\$b->setPixel(0, 13, array(0,0,255));
\$b->toGrayscale();
\$b->writeP6('p6-grayscale.ppm');
```

## PL/I

```
do j = 1 to hbound(image,1);
do i = 0 to hbound(image,2);
color = image(i,j);
R = substr(color, 17, 8);
G = substr(color, 9, 8);
B = substr(color, 1, 8);
grey =  trunc(0.2126*R + 0.7152*G + 0.0722*B);
greybits = grey;
image(i,j) = substr(greybits, length(greybits)-7, 8);
end;
end;

```

## PicoLisp

```# Convert color image (PPM) to greyscale image (PGM)
(de ppm->pgm (Ppm)
(mapcar
'((Y)
(mapcar
'((C)
(/
(+
(* (car C) 2126)  # Red
(* (cadr C) 7152)  # Green
(* (caddr C) 722) )  # Blue
10000 ) )
Y ) )
Ppm ) )

# Convert greyscale image (PGM) to color image (PPM)
(de pgm->ppm (Pgm)
(mapcar
'((Y)
(mapcar
'((G) (list G G G))
Y ) )
Pgm ) )
```
```# Write greyscale image (PGM) to file
(de pgmWrite (Pgm File)
(out File
(prinl "P5")
(prinl (length (car Pgm)) " " (length Pgm))
(prinl 255)
(for Y Pgm (apply wr Y)) ) )

# Create an empty image of 120 x 90 pixels
(setq *Ppm (make (do 90 (link (need 120)))))

# Fill background with green color
(ppmFill *Ppm 0 255 0)

# Draw a diagonal line
(for I 80 (ppmSetPixel *Ppm I I 0 0 0))

# Convert to greyscale image (PGM)
(setq *Pgm (ppm->pgm *Ppm))

# Write greyscale image to .pgm file
(pgmWrite *Pgm "img.pgm")

# Convert to color image and write to .ppm file
(ppmWrite (pgm->ppm *Pgm) "img.ppm")
```

## PureBasic

```Procedure ImageGrayout(image)
Protected w, h, x, y, r, g, b, gray, color

w = ImageWidth(image)
h = ImageHeight(image)
StartDrawing(ImageOutput(image))
For x = 0 To w - 1
For y = 0 To h - 1
color = Point(x, y)
r    = Red(color)
g    = Green(color)
b    = Blue(color)
gray = 0.2126*r + 0.7152*g + 0.0722*b
Plot(x, y, RGB(gray, gray, gray)
Next
Next
StopDrawing()
EndProcedure

Procedure ImageToColor(image)
Protected w, h, x, y, v, gray

w = ImageWidth(image)
h = ImageHeight(image)
StartDrawing(ImageOutput(image))
For x = 0 To w - 1
For y = 0 To h - 1
gray = Point(x, y)
v    = Red(gray) ;for gray, each of the color's components is the same
;color = RGB(0.2126*v, 0.7152*v, 0.0722*v)
Plot(x, y, RGB(v, v, v))
Next
Next
StopDrawing()
EndProcedure
```

## Python

{{works with|Python|3.1}}

Extending the example given [[Basic_bitmap_storage#Alternative_version|here]]

```# String masquerading as ppm file (version P3)
import io
ppmfileout = io.StringIO('')

def togreyscale(self):
for h in range(self.height):
for w in range(self.width):
r, g, b = self.get(w, h)
l = int(0.2126 * r + 0.7152 * g + 0.0722 * b)
self.set(w, h, Colour(l, l, l))

Bitmap.togreyscale = togreyscale

# Draw something simple
bitmap = Bitmap(4, 4, white)
bitmap.fillrect(1, 0, 1, 2, Colour(127, 0, 63))
bitmap.set(3, 3, Colour(0, 127, 31))
print('Colour:')
# Write to the open 'file' handle
bitmap.writeppmp3(ppmfileout)
print(ppmfileout.getvalue())
print('Grey:')
bitmap.togreyscale()
ppmfileout = io.StringIO('')
bitmap.writeppmp3(ppmfileout)
print(ppmfileout.getvalue())

'''
The print statement above produces the following output :

Colour:
P3
# generated from Bitmap.writeppmp3
4 4
255
255 255 255   255 255 255   255 255 255     0 127  31
255 255 255   255 255 255   255 255 255   255 255 255
255 255 255   127   0  63   255 255 255   255 255 255
255 255 255   127   0  63   255 255 255   255 255 255

Grey:
P3
# generated from Bitmap.writeppmp3
4 4
254
254 254 254   254 254 254   254 254 254    93  93  93
254 254 254   254 254 254   254 254 254   254 254 254
254 254 254    31  31  31   254 254 254   254 254 254
254 254 254    31  31  31   254 254 254   254 254 254

'''
```

## R

```# Conversion from Grey to RGB uses the following code
setAs("pixmapGrey", "pixmapRGB",
function(from, to){
z = new(to, as(from, "pixmap"))
z@red = from@grey
z@green = from@grey
z@blue = from@grey
z@channels = c("red", "green", "blue")
z
})

# Conversion from RGB to grey uses built-in coefficients of 0.3, 0.59, 0.11.  To see this, type

# We can override this behaviour with
function(object, coef=NULL){
if(is.null(coef)) coef = c(0.2126, 0.7152, 0.0722)
z = new("pixmapGrey", object)
z@grey = coef[1] * object@red + coef[2] * object@green +
coef[3] * object@blue
z@channels = "grey"
z
})

# Colour image
plot(p1 <- pixmapRGB(c(c(1,0,0,0,0,1), c(0,1,0,0,1,0), c(0,0,1,1,0,0)), nrow=6, ncol=6))

#Convert to grey
plot(p2 <- as(p1, "pixmapGrey"))

# Convert back to "colour"
plot(p3 <- as(p2, "pixmapRGB"))
```

## Racket

This image shows the output: http://imgur.com/e3Wi8RJ

```
#lang racket
(require racket/draw)

(define (gray->color gray-bm)
(define gray-dc (new bitmap-dc% [bitmap gray-bm]))
(define-values (w h) (send gray-dc get-size))
(define width (exact-floor w))
(define height (exact-floor h))
(define color-bm (make-bitmap width height))
(define color-dc (new bitmap-dc% [bitmap color-bm]))
(define pixels (make-bytes (* 4 width height)))
(send gray-dc get-argb-pixels 0 0 width height pixels)
(send color-dc set-argb-pixels 0 0 width height pixels)
color-bm)

(define (color->gray color-bm)
(define color-dc (new bitmap-dc% [bitmap color-bm]))
(define-values (w h) (send color-dc get-size))
(define width (exact-floor w))
(define height (exact-floor h))
(define gray-bm (make-bitmap width height))
(define gray-dc (new bitmap-dc% [bitmap gray-bm]))
(define pixels (make-bytes (* 4 width height)))
(send color-dc get-argb-pixels 0 0 width height pixels)
(for ([i (in-range 0 (* 4 width height) 4)])
(define α (bytes-ref pixels i))
(define r (bytes-ref pixels (+ i 1)))
(define g (bytes-ref pixels (+ i 2)))
(define b (bytes-ref pixels (+ i 3)))
(define l (exact-floor (+ (* 0.2126 r) (* 0.7152 g) (* 0.0722 b))))
(bytes-set! pixels (+ i 1) l)
(bytes-set! pixels (+ i 2) l)
(bytes-set! pixels (+ i 3) l))
(send gray-dc set-argb-pixels 0 0 width height pixels)
gray-bm)

(require images/icons/symbol)
(define rosetta (text-icon "Rosetta Code" #:color "red" #:height 80))
rosetta
(color->gray rosetta)
(gray->color (color->gray rosetta))

```

## REXX

Note: REXX uses characters instead of binary for storing numbers, so there is no rounding (using characters to

```      store numbers is almost the same as using decimal floating point).
```
```/*REXX program converts a RGB (red─green─blue) image into a  grayscale/greyscale image. */
blue= '00 00 ff'x                              /*define the blue color  (hexadecimal).*/
@.= blue                                     /*set the entire  image  to blue color.*/
width=  60                                      /* width of the   image  (in pixels).  */
height= 100                                      /*height  "  "      "      "   "       */

do    col=1  for width
do row=1  for height                        /* [↓]  C2D  convert  char ───> decimal*/
r=  left(@.col.row, 1)    ;    r=c2d(r)     /*extract the component red  & convert.*/
g=substr(@.col.row, 2, 1) ;    g=c2d(g)     /*   "     "      "    green "    "    */
b= right(@.col.row, 1)    ;    b=c2d(b)     /*   "     "      "    blue  "    "    */
_= d2c( (.2126*r + .7152*g + .0722*b) % 1)  /*convert RGB number  ───►  grayscale. */
@.col.row=copies(_, 3)                      /*redefine old RGB    ───►  grayscale. */
end   /*row*/                               /* [↑]  D2C  convert  decimal ───► char*/
end      /*col*/                               /* [↑]  x%1   is the same as  TRUNC(x) */
/*stick a fork in it,  we're all done. */
```

Other alternatives to express the ''blue'' color are:

```  blue= "00 00 ff"x                              /*define the blue color  (hexadecimal).*/
blue= '00 00 FF'x                              /*define the blue color  (hexadecimal).*/
blue= '0000ff'x                                /*define the blue color  (hexadecimal).*/

blue= '00000000 00000000 11111111'b            /*define the blue color  (binary).     */
blue= '000000000000000011111111'b              /*define the blue color  (binary)      */

blue= 'zzy'                                    /*define the blue color  (character).  */
/*not recommended because of rendering.*/
/*where   Z   is the character  '00'x  */
/*where   Y   is the character  'ff'x  */

/*Both  Z & Y are normally not viewable*/
/*on most terminals (appear as blanks).*/
```

## Ruby

Extending [[Basic_bitmap_storage#Ruby]]

```class RGBColour
def to_grayscale
luminosity = Integer(0.2126*@red + 0.7152*@green + 0.0722*@blue)
self.class.new(luminosity, luminosity, luminosity)
end
end

class Pixmap
def to_grayscale
gray = self.class.new(@width, @height)
@width.times do |x|
@height.times do |y|
gray[x,y] = self[x,y].to_grayscale
end
end
gray
end
end
```

## Scala

Uses the [[Basic_bitmap_storage#Scala|Scala Basic Bitmap Storage]] class.

```object BitmapOps {
def luminosity(c:Color)=(0.2126*c.getRed + 0.7152*c.getGreen + 0.0722*c.getBlue+0.5).toInt

def grayscale(bm:RgbBitmap)={
val image=new RgbBitmap(bm.width, bm.height)
for(x <- 0 until bm.width; y <- 0 until bm.height; l=luminosity(bm.getPixel(x,y)))
image.setPixel(x, y, new Color(l,l,l))
image
}
}
```

## Sidef

{{trans|Perl}}

```require('Image::Imlib2')

func tograyscale(img) {
var (width, height) = (img.width, img.height)
var gimg = %s'Image::Imlib2'.new(width, height)
for y,x in (^height ~X ^width) {
var (r, g, b) = img.query_pixel(x, y)
var gray = int(0.2126*r + 0.7152*g + 0.0722*b)
gimg.set_color(gray, gray, gray, 255)
gimg.draw_point(x, y)
}
return gimg
}

var (input='input.png', output='output.png') = ARGV...
var gscale = tograyscale(image)
gscale.set_quality(80)
gscale.save(output)
```

## Tcl

```package require Tk

proc grayscale image {
set w [image width \$image]
set h [image height \$image]
for {set x 0} {\$x<\$w} {incr x} {
for {set y 0} {\$y<\$h} {incr y} {
lassign [\$image get \$x \$y] r g b
set l [expr {int(0.2126*\$r + 0.7152*\$g + 0.0722*\$b)}]
\$image put [format "#%02x%02x%02x" \$l \$l \$l] -to \$x \$y
}
}
}
```

Photo images are always 8-bits-per-channel RGBA.

## Vedit macro language

Conversion to a grayscale image.

```//  Convert RGB image to grayscale (8 bit/pixel)
//    #10 = buffer that contains image data
//  On return:
//    #20 = buffer for the new grayscale image

:RGB_TO_GRAYSCALE:
File_Open("|(VEDIT_TEMP)\gray.data", OVERWRITE+NOEVENT+NOMSG)
#20 = Buf_Num
BOF
Del_Char(ALL)
Buf_Switch(#10)
Repeat(File_Size/3) {
#9 =  Cur_Char() * 2126
#9 += Cur_Char(1) * 7152
#9 += Cur_Char(2) * 722
Char(3)
Buf_Switch(#20)
Ins_Char(#9 / 10000)
Buf_Switch(#10)
}
Return
```

Conversion to a color image.

```//  Convert grayscale image (8 bits/pixel) into RGB (24 bits/pixel)
//    #20 = buffer that contains image data
//  On return:
//    #10 = buffer for the new RGB image

:GRAYSCALE_TO_RGB:
File_Open("|(VEDIT_TEMP)\RGB.data", OVERWRITE+NOEVENT+NOMSG)
#10 = Buf_Num
BOF
Del_Char(ALL)
Buf_Switch(#20)			// input image (grayscale)
BOF
Repeat(File_Size) {
#9 =  Cur_Char()
Char
Buf_Switch(#10)		// output image (RGB)
Ins_Char(#9, COUNT, 3)
Buf_Switch(#20)
}
Return
```

## Visual Basic .NET

Convert a Bitmap to Grayscale.

```
Imports System.Drawing.Imaging

Public Function Grayscale(ByVal Map As Bitmap) As Bitmap

Dim oData() As Integer = GetData(Map)
Dim oReturn As New Bitmap(Map.Width, Map.Height, Map.PixelFormat)
Dim a As Integer = 0
Dim r As Integer = 0
Dim g As Integer = 0
Dim b As Integer = 0
Dim l As Integer = 0

For i As Integer = 0 To oData.GetUpperBound(0)
a = (oData(i) >> 24)
r = (oData(i) >> 16) And 255
g = (oData(i) >> 8) And 255
b = oData(i) And 255

l = CInt(r * 0.2126F + g * 0.7152F + b * 0.0722F)

oData(i) = (a << 24) Or (l << 16) Or (l << 8) Or l
Next

SetData(oReturn, oData)

Return oReturn

End Function

Private Function GetData(ByVal Map As Bitmap) As Integer()

Dim oBMPData As BitmapData = Nothing
Dim oData() As Integer = Nothing

oBMPData = Map.LockBits(New Rectangle(0, 0, Map.Width, Map.Height), ImageLockMode.ReadOnly, PixelFormat.Format32bppArgb)

Array.Resize(oData, Map.Width * Map.Height)

Runtime.InteropServices.Marshal.Copy(oBMPData.Scan0, oData, 0, oData.Length)

Map.UnlockBits(oBMPData)

Return oData

End Function

Private Sub SetData(ByVal Map As Bitmap, ByVal Data As Integer())

Dim oBMPData As BitmapData = Nothing

oBMPData = Map.LockBits(New Rectangle(0, 0, Map.Width, Map.Height), ImageLockMode.WriteOnly, PixelFormat.Format32bppArgb)

Runtime.InteropServices.Marshal.Copy(Data, 0, oBMPData.Scan0, Data.Length)

Map.UnlockBits(oBMPData)

End Sub
```

## Yabasic

{{trans|BASIC256}} "image" is a library created by Hermang Mansilla for import and show .BMP files. http://www.oocities.org/sunsetstrip/palms/1624/yabasic/libs/IMAGE.TXT

```import image

open window 600,600

GetImage(1, "House.bmp")
DisplayImage(1, 0, 0)

For x = 1 to 300
For y = 1 to 300
z\$ = getbit\$(x,y,x,y)
r = dec(mid\$(z\$,9,2))
g = dec(mid\$(z\$,11,2))
b = dec(mid\$(z\$,13,2))
r3=(r+g+b)/3
g3=(r+g+b)/3
b3=(r+g+b)/3
color r3,g3,b3
dot x+300,y+300
next y
next x
```

## zkl

Does an in-place conversion from a color PPM image to a gray scale PPM image (ie rgb is down sampled but remains rgb vs one byte color). If you wish to write a bit map (or some other format), check out [[Bitmap/PPM conversion through a pipe#zkl]]

Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl {{trans|BASIC256}}

```fcn toGrayScale(img){  // in-place conversion
foreach x,y in (img.w,img.h){
r,g,b:=img[x,y].toBigEndian(3);
lum:=(0.2126*r + 0.7152*g + 0.0722*b).toInt();
img[x,y]=((lum*256) + lum)*256 + lum;
}
}
```
```img:=PPM.readPPMFile("lena.ppm");
toGrayScale(img);
img.write(File("foo.ppm","wb"));
```

{{out}} http://www.zenkinetic.com/Images/RosettaCode/lenaGray.jpg

{{omit from|AWK}} {{omit from|Lotus 123 Macro Scripting}} {{omit from|ML/I}} {{omit from|PARI/GP}} {{omit from|TI-83 BASIC}} {{omit from|TI-89 BASIC}}