⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

{{task}} A fast scheme for evaluating a polynomial such as: : $-19+7x-4x^2+6x^3,$ when : $x=3;$. is to arrange the computation as follows: : $\left(\left(\left(\left(0\right) x + 6\right) x + \left(-4\right)\right) x + 7\right) x + \left(-19\right);$ And compute the result from the innermost brackets outwards as in this pseudocode: coefficients ''':=''' [-19, 7, -4, 6] ''# list coefficients of all x^0..x^n in order'' x ''':=''' 3 accumulator ''':=''' 0 '''for''' i '''in''' ''length''(coefficients) '''downto''' 1 '''do''' ''# Assumes 1-based indexing for arrays'' accumulator ''':=''' ( accumulator * x ) + coefficients[i] '''done''' ''# accumulator now has the answer''

'''Task Description''' :Create a routine that takes a list of coefficients of a polynomial in order of increasing powers of x; together with a value of x to compute its value at, and return the value of the polynomial at that value using [http://www.physics.utah.edu/~detar/lessons/c++/array/node1.html Horner's rule].

Cf. [[Formal power series]]

## 360 Assembly

```*        Horner's rule for polynomial evaluation - 07/10/2015
HORNER   CSECT
USING  HORNER,R15         set base register
SR     R5,R5              accumulator=0
LA     R2,N               i=number_of_coeff
LOOP     M      R4,X               accumulator=accumulator*x
LR     R1,R2              i
SLA    R1,2               i*4
L      R3,COEF-4(R1)      coef(i)
AR     R5,R3              accumulator=accumulator+coef(i)
BCT    R2,LOOP            i=i-1; loop n times
XDECO  R5,PG              edit accumulator
XPRNT  PG,12              print buffer
XR     R15,R15            set return code
COEF     DC     F'-19',F'7',F'-4',F'6'    <== input values
X        DC     F'3'                      <== input value
N        EQU    (X-COEF)/4         number of coefficients
PG       DS     CL12               buffer
YREGS
END    HORNER
```

{{out}}

```
128

```

## ACL2

```(defun horner (ps x)
(if (endp ps)
0
(+ (first ps)
(* x (horner (rest ps) x)))))
```

```with Ada.Float_Text_IO; use Ada.Float_Text_IO;

procedure Horners_Rule is
type Coef is array(Positive range <>) of Float;

function Horner(Coeffs: Coef; Val: Float) return Float is
Res : Float := 0.0;
begin
for P in reverse Coeffs'Range loop
Res := Res*Val + Coeffs(P);
end loop;
return Res;
end Horner;

begin
Put(Horner(Coeffs => (-19.0, 7.0, -4.0, 6.0), Val => 3.0), Aft=>1, Exp=>0);
end Horners_Rule;
```

Output:

```128.0
```

## Aime

```real
horner(list coeffs, real x)
{
real c, z;

z = 0;

for (, c of coeffs) {
z *= x;
z += c;
}

z;
}

integer
main(void)
{
o_(horner(list(-19r, 7.0, -4r, 6r), 3), "\n");

0;
}
```

## ALGOL 68

{{works with|ALGOL 68G}}

```PROC horner = ([]REAL c, REAL x)REAL :
(
REAL res := 0.0;
FOR i FROM UPB c BY -1 TO LWB c DO
res := res * x + c[i]
OD;
res
);

main:(
REAL coeffs := (-19.0, 7.0, -4.0, 6.0);
print( horner(coeffs, 3.0) )
)
```

## ATS

```#include

fun
horner
(
x: int, cs: List int
) : int = let
//
implement
list_foldright\$fopr<int><int> (a, b) = a + b * x
//
in
list_foldright<int><int> (cs, 0)
end // end of [horner]

implement
main0 () = let
val x = 3
val cs = \$list{int}(~19, 7, ~4, 6)
val res = horner (x, cs)
in
println! (res)
end // end of [main0]
```

## AutoHotkey

```Coefficients = -19, 7, -4, 6
x := 3

MsgBox, % EvalPolynom(Coefficients, x)

;---------------------------------------------------------------------------
EvalPolynom(Coefficients, x) { ; using Horner's rule
;---------------------------------------------------------------------------
StringSplit, Co, coefficients, `,, %A_Space%
Result := 0
Loop, % Co0
i := Co0 - A_Index + 1, Result := Result * x + Co%i%
Return, Result
}
```

Message box shows:

```128
```

## AWK

```#!/usr/bin/awk -f
function horner(x, A) {
acc = 0;
for (i = length(A); 0<i; i--) {
acc = acc*x + A[i];
}
return acc;
}
BEGIN {
split(p,P);
print horner(x,P);
}
```

{{out}}

```
awk  -v X=3 -v p="-19  7 -4  6" -f horner.awk
128

```

## Batch File

```
@echo off

call:horners a:-19 b:7 c:-4 d:6 x:3
call:horners x:3 a:-19 c:-4 d:6 b:7
pause>nul
exit /b

:horners
setlocal enabledelayedexpansion
set a=0
set b=0
set c=0
set d=0
set x=0

for %%i in (%*) do (
for /f "tokens=1,2 delims=:" %%j in ("%%i") do (
set %%j=%%k
)
)
set /a return=((((0)*%x%+%d%)*%x%+(%c%))*%x%+%b%)*%x%+(%a%)
echo %return%
exit /b

```

{{out}}

```
>a:-19 b:7 c:-4 d:6 x:3
128
>x:3 a:-19 c:-4 d:6 b:7
128

```

## BBC BASIC

```      DIM coefficients(3)
coefficients() = -19, 7, -4, 6
PRINT FNhorner(coefficients(), 3)
END

DEF FNhorner(coeffs(), x)
LOCAL i%, v
FOR i% = DIM(coeffs(), 1) TO 0 STEP -1
v = v * x + coeffs(i%)
NEXT
= v
```

## Bracmat

```( ( Horner
=   accumulator coefficients x coeff
.   !arg:(?coefficients.?x)
& 0:?accumulator
&   whl
' ( !coefficients:?coefficients #%@?coeff
& !accumulator*!x+!coeff:?accumulator
)
& !accumulator
)
& Horner\$(-19 7 -4 6.3)
);
```

Output:

```128
```

## C

{{trans|Fortran}}

```#include <stdio.h>

double horner(double *coeffs, int s, double x)
{
int i;
double res = 0.0;

for(i=s-1; i >= 0; i--)
{
res = res * x + coeffs[i];
}
return res;
}

int main()
{
double coeffs[] = { -19.0, 7.0, -4.0, 6.0 };

printf("%5.1f\n", horner(coeffs, sizeof(coeffs)/sizeof(double), 3.0));
return 0;
}
```

## C#

```using System;
using System.Linq;

class Program
{
static double Horner(double[] coefficients, double variable)
{
return coefficients.Reverse().Aggregate(
(accumulator, coefficient) => accumulator * variable + coefficient);
}

static void Main()
{
Console.WriteLine(Horner(new[] { -19.0, 7.0, -4.0, 6.0 }, 3.0));
}
}
```

Output:

```128
```

## C++

The same C function works too, but another solution could be:

```#include <iostream>
#include <vector>

using namespace std;

double horner(vector<double> v, double x)
{
double s = 0;

for( vector<double>::const_reverse_iterator i = v.rbegin(); i != v.rend(); i++ )
s = s*x + *i;
return s;
}

int main()
{
double c[] = { -19, 7, -4, 6 };
vector<double> v(c, c + sizeof(c)/sizeof(double));
cout << horner(v, 3.0) << endl;
return 0;
}
```

Yet another solution, which is more idiomatic in C++ and works on any bidirectional sequence:

```
#include <iostream>

template<typename BidirIter>
double horner(BidirIter begin, BidirIter end, double x)
{
double result = 0;
while (end != begin)
result = result*x + *--end;
return result;
}

int main()
{
double c[] = { -19, 7, -4, 6 };
std::cout << horner(c, c + 4, 3) << std::endl;
}

```

## Clojure

```(defn horner [coeffs x]
(reduce #(-> %1 (* x) (+ %2)) (reverse coeffs)))

(println (horner [-19 7 -4 6] 3))
```

## CoffeeScript

```
eval_poly = (x, coefficients) ->
# coefficients are for ascending powers
return 0 if coefficients.length == 0
ones_place = coefficients.shift()
x * eval_poly(x, coefficients) + ones_place

console.log eval_poly 3, [-19, 7, -4, 6] # 128
console.log eval_poly 10, [4, 3, 2, 1] # 1234
console.log eval_poly 2, [1, 1, 0, 0, 1] # 19

```

## Common Lisp

```(defun horner (coeffs x)
(reduce #'(lambda (coef acc) (+ (* acc x) coef))
coeffs :from-end t :initial-value 0))
```

Alternate version using LOOP. Coefficients are passed in a vector.

```(defun horner (x a)
(loop :with y = 0
:for i :from (1- (length a)) :downto 0
:do (setf y (+ (aref a i) (* y x)))
:finally (return y)))

(horner 1.414 #(-2 0 1))
```

## D

The poly() function of the standard library std.math module uses Horner's rule:

```void main() {
void main() {
import std.stdio, std.math;
double x = 3.0;
static real[] pp = [-19,7,-4,6];

poly(x,pp).writeln;
}
}
```

Basic implementation:

```import std.stdio, std.traits;

CommonType!(U, V) horner(U, V)(U[] p, V x) pure nothrow @nogc {
typeof(return) accumulator = 0;
foreach_reverse (c; p)
accumulator = accumulator * x + c;
return accumulator;
}

void main() {
[-19, 7, -4, 6].horner(3.0).writeln;
}
```

More functional style:

```import std.stdio, std.algorithm, std.range;

auto horner(T, U)(in T[] p, in U x) pure nothrow @nogc {
return reduce!((a, b) => a * x + b)(U(0), p.retro);
}

void main() {
[-19, 7, -4, 6].horner(3.0).writeln;
}
```

## E

```def makeHornerPolynomial(coefficients :List) {
def indexing := (0..!coefficients.size()).descending()
return def hornerPolynomial(x) {
var acc := 0
for i in indexing {
acc := acc * x + coefficients[i]
}
return acc
}
}
```
```? makeHornerPolynomial([-19, 7, -4, 6])(3)
# value: 128
```

## EchoLisp

### Functional version

```
(define (horner x poly)
(foldr (lambda (coeff acc) (+ coeff (* acc x))) 0 poly))

(horner 3 '(-19 7 -4 6)) → 128

```

### Library

```
(lib 'math)

(define P '(-19 7 -4 6))
(poly->string 'x P) → 6x^3 -4x^2 +7x -19
(poly 3 P) → 128

```

## Elena

{{trans|C#}} ELENA 4.1 :

```import extensions;
import system'routines;

horner(coefficients,variable)
{
^ coefficients.clone().sequenceReverse().accumulate(new Real(),(accumulator,coefficient => accumulator * variable + coefficient))
}

public program()
{
console.printLine(horner(new real[]::(-19.0r, 7.0r, -4.0r, 6.0r), 3.0r))
}
```

{{out}}

```
128.0

```

## Elixir

```horner = fn(list, x)-> List.foldr(list, 0, fn(c,acc)-> x*acc+c end) end

IO.puts horner.([-19,7,-4,6], 3)
```

{{out}}

```
128

```

## Emacs Lisp

{{trans|Common Lisp}}

```
(defun horner (coeffs x)
(reduce #'(lambda (coef acc) (+ (* acc x) coef) )
coeffs :from-end t :initial-value 0) )

(horner '(-19 7 -4 6) 3)

```

Output:

```
128

```

## Erlang

```
horner(L,X) ->
lists:foldl(fun(C, Acc) -> X*Acc+C end,0, lists:reverse(L)).
t() ->
horner([-19,7,-4,6], 3).

```

## ERRE

```
PROGRAM HORNER

!                        2   3
! polynomial is -19+7x-4x +6x
!

DIM C

PROCEDURE HORNER(C[],X->RES)
LOCAL I%,V
FOR I%=UBOUND(C,1) TO 0 STEP -1 DO
V=V*X+C[I%]
END FOR
RES=V
END PROCEDURE

BEGIN
C[]=(-19,7,-4,6)
HORNER(C[],3->RES)
PRINT(RES)
END PROGRAM

```

## Euler Math Toolbox

```
>function horner (x,v) ...
\$  n=cols(v); res=v{n};
\$  loop 1 to n-1; res=res*x+v{n-#}; end;
\$  return res
\$endfunction
>v=[-19,7,-4,6]
[ -19  7  -4  6 ]
>horner(2,v) // test Horner
27
>evalpoly(2,v) // built-in Horner
27
>horner(I,v) // complex values
-15+1i
>horner(1±0.05,v) // interval values
~-10.9,-9.11~
>function p(x) &= sum(@v[k]*x^(k-1),k,1,4) // Symbolic Polynomial
3      2
6 x  - 4 x  + 7 x - 19

```

```
let horner l x =
List.rev l |> List.fold ( fun acc c -> x*acc+c) 0

horner [-19;7;-4;6] 3

```

## Factor

```: horner ( coeff x -- res )
[ <reversed> 0 ] dip '[ [ _ * ] dip + ] reduce ;
```

( scratchpad ) { -19 7 -4 6 } 3 horner . 128

## Forth

```: fhorner ( coeffs len F: x -- F: val )
0e
floats bounds ?do
fover f*  i f@ f+
1 floats +loop
fswap fdrop ;

create coeffs 6e f, -4e f, 7e f, -19e f,

coeffs 4 3e fhorner f.    \ 128.
```

## Fortran

{{works with|Fortran|90 and later}}

```program test_horner

implicit none

write (*, '(f5.1)') horner ((/-19.0, 7.0, -4.0, 6.0/), 3.0)

contains

function horner (coeffs, x) result (res)

implicit none
real, dimension (:), intent (in) :: coeffs
real, intent (in) :: x
real :: res
integer :: i

res = 0.0
do i = size (coeffs), 1, -1
res = res * x + coeffs (i)
end do

end function horner

end program test_horner
```

Output:

```128.0
```

### Fortran 77

```      FUNCTION HORNER(N,A,X)
IMPLICIT NONE
INTEGER I,N
DOUBLE PRECISION A(N),X,Y,HORNER
Y = A(N)
DO I = N - 1,1,-1
Y = Y*X + A(I)
END DO
HORNER=Y
END
```

As a matter of fact, computing the derivative is not much more difficult (see [http://www.cs.berkeley.edu/~wkahan/Math128/Poly.pdf Roundoff in Polynomial Evaluation], W. Kahan, 1986). The following subroutine computes both polynomial value and derivative for argument x.

```      SUBROUTINE HORNER2(N,A,X,Y,Z)
C COMPUTE POLYNOMIAL VALUE AND DERIVATIVE
C SEE "ROUNDOFF IN POLYNOMIAL EVALUATION", W. KAHAN, 1986
C POLY: A(1) + A(2)*X + ... + A(N)*X**(N-1)
C Y: VALUE, Z: DERIVATIVE
IMPLICIT NONE
INTEGER I,N
DOUBLE PRECISION A(N),X,Y,Z
Z = 0.0D0
Y = A(N)
DO 10 I = N - 1,1,-1
Z = Z*X + Y
10 Y = Y*X + A(I)
END

```

## FreeBASIC

```
Function AlgoritmoHorner(coeffs() As Integer, x As Integer) As Integer
Dim As Integer  i, acumulador = 0
For i = Ubound(coeffs, 1) To 0 Step -1
Next i
End Function

Dim As Integer x = 3
Dim As Integer coeficientes(3) = {-19, 7, -4, 6}
Print "Algoritmo de Horner para el polinomio 6*x^3 - 4*x^2 + 7*x - 19 para x = 3: ";
Print AlgoritmoHorner(coeficientes(), x)
End

```

{{out}}

```
Algoritmo de Horner para el polinomio 6*x^3 - 4*x^2 + 7*x - 19 para x = 3:  128

```

## FunL

```import lists.foldr

def horner( poly, x ) = foldr( \a, b -> a + b*x, 0, poly )

println( horner([-19, 7, -4, 6], 3) )
```

{{out}}

```
128

```

## GAP

```# The idiomatic way to compute with polynomials

x := Indeterminate(Rationals, "x");

# This is a value in a polynomial ring, not a function
p := 6*x^3 - 4*x^2 + 7*x - 19;

Value(p, 3);
# 128

u := CoefficientsOfUnivariatePolynomial(p);
# [ -19, 7, -4, 6 ]

# One may also create the polynomial from coefficients
q := UnivariatePolynomial(Rationals, [-19, 7, -4, 6], x);
# 6*x^3-4*x^2+7*x-19

p = q;
# true

# Now a Horner implementation
Horner := function(coef, x)
local v, c;
v := 0;
for c in Reversed(coef) do
v := x*v + c;
od;
return v;
end;

Horner(u, 3);
# 128
```

## Go

```package main

import "fmt"

func horner(x int64, c []int64) (acc int64) {
for i := len(c) - 1; i >= 0; i-- {
acc = acc*x + c[i]
}
return
}

func main() {
fmt.Println(horner(3, []int64{-19, 7, -4, 6}))
}
```

Output:

```
128

```

## Groovy

Solution:

```def hornersRule = { coeff, x -> coeff.reverse().inject(0) { accum, c -> (accum * x) + c } }
```

Test includes demonstration of [[currying]] to create polynomial functions of one variable from generic Horner's rule calculation. Also demonstrates constructing the derivative function for the given polynomial. And finally demonstrates in the Newton-Raphson method to find one of the polynomial's roots using the polynomial and derivative functions constructed earlier.

```def coefficients = [-19g, 7g, -4g, 6g]
println (["p coefficients":coefficients])

def testPoly = hornersRule.curry(coefficients)
println (["p(3)":testPoly(3g)])
println (["p(0)":testPoly(0g)])

def derivativeCoefficients = { coeff -> (1..<(coeff.size())).collect { coeff[it] * it } }
println (["p' coefficients":derivativeCoefficients(coefficients)])

def testDeriv = hornersRule.curry(derivativeCoefficients(coefficients))
println (["p'(3)":testDeriv(3g)])
println (["p'(0)":testDeriv(0g)])

def newtonRaphson = { x, f, fPrime ->
while (f(x).abs() > 0.0001) {
x -= f(x)/fPrime(x)
}
x
}

def root = newtonRaphson(3g, testPoly, testDeriv)
println ([root:root.toString()[0..5], "p(root)":testPoly(root).toString()[0..5], "p'(root)":testDeriv(root).toString()[0..5]])
```

Output:

```[p coefficients:[-19, 7, -4, 6]]
[p(3):128]
[p(0):-19]
[p' coefficients:[7, -8, 18]]
[p'(3):145]
[p'(0):7]
[root:1.4183, p(root):0.0000, p'(root):31.862]
```

```horner :: (Num a) => a -> [a] -> a
horner x = foldr (\a b -> a + b*x) 0

main = print \$ horner 3 [-19, 7, -4, 6]
```

## HicEst

```REAL :: x=3, coeffs(4)
DATA    coeffs/-19.0, 7.0, -4.0, 6.0/

WRITE(Messagebox) Horner(coeffs, x) ! shows 128

FUNCTION Horner(c, x)
DIMENSION c(1)
Horner = 0
DO i = LEN(c), 1, -1
Horner = x*Horner + c(i)
ENDDO
END
```

```
procedure poly_eval (x, coeffs)
accumulator := 0
every index := *coeffs to 1 by -1 do
accumulator := accumulator * x + coeffs[index]
return accumulator
end

procedure main ()
write (poly_eval (3, [-19, 7, -4, 6]))
end

```

## J

'''Solution''':

```

horner =: 4 :  '  (+ *&y)/x'

horner1 =: (#."0 _ |.)~

horner2=: [: +`*/ [: }: ,@,.    NB. Alternate

```

'''Example''':

```   _19 7 _4 6 horner 3
128
```

'''Note:'''

The primitive verb `p.` would normally be used to evaluate polynomials.

```   _19 7 _4 6 p. 3
128
```

## Java

{{works with|Java|1.5+}}

```import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class Horner {
public static void main(String[] args){
List<Double> coeffs = new ArrayList<Double>();
System.out.println(polyEval(coeffs, 3));
}

public static double polyEval(List<Double> coefficients, double x) {
Collections.reverse(coefficients);
Double accumulator = coefficients.get(0);
for (int i = 1; i < coefficients.size(); i++) {
accumulator = (accumulator * x) + (Double) coefficients.get(i);
}
return accumulator;
}
}
```

Output:

```128.0
```

## JavaScript

{{works with|JavaScript|1.8}} which includes {{works with|Firefox|3}}

```function horner(coeffs, x) {
return coeffs.reduceRight( function(acc, coeff) { return(acc * x + coeff) }, 0);
}
console.log(horner([-19,7,-4,6],3));  // ==> 128

```

## Julia

{{works with|Julia|0.6}}

'''Imperative''':

```function horner(coefs, x)
s = coefs[end]
for k in length(coefs)-1:-1:1
s = coefs[k] + x * s
end
return s
end

@show horner([-19, 7, -4, 6], 3)
```

{{out}}

```horner([-19, 7, -4, 6], 3) = 128
```

'''Functional''':

```horner2(coefs, x) = foldr((u, v) -> u + x * v, 0, coefs)

@show horner2([-19, 7, -4, 6], 3)
```

{{out}}

```horner2([-19, 7, -4, 6], 3) = 128
```

## K

```
horner:{y _sv|x}
horner[-19 7 -4 6;3]
128

```

## Kotlin

```// version 1.1.2

fun horner(coeffs: DoubleArray, x: Double): Double {
var sum = 0.0
for (i in coeffs.size - 1 downTo 0) sum = sum * x + coeffs[i]
return sum
}

fun main(args: Array<String>) {
val coeffs = doubleArrayOf(-19.0, 7.0, -4.0, 6.0)
println(horner(coeffs, 3.0))
}
```

{{out}}

```
128.0

```

## Liberty BASIC

```src\$ = "Hello"
coefficients\$ = "-19 7 -4 6" ' list coefficients of all x^0..x^n in order
x = 3
print horner(coefficients\$, x)      '128

print horner("4  3  2  1", 10)      '1234
print horner("1  1  0  0  1", 2)    '19
end

function horner(coefficients\$, x)
accumulator = 0
'getting length of a list requires extra pass with WORD\$.
'So we just started from high above
for index = 100 to 1 step -1
cft\$ = word\$(coefficients\$, index)
if cft\$<>"" then accumulator = ( accumulator * x ) + val(cft\$)
next
horner = accumulator
end function

```
```to horner :x :coeffs
if empty? :coeffs [output 0]
output (first :coeffs) + (:x * horner :x bf :coeffs)
end

show horner 3 [-19 7 -4 6]   ; 128
```

## Lua

```function horners_rule( coeff, x )
local res = 0
for i = #coeff, 1, -1 do
res = res * x + coeff[i]
end
return res
end

x = 3
coefficients = { -19, 7, -4, 6 }
print( horners_rule( coefficients, x ) )
```

## Maple

```
applyhorner:=(L::list,x)->foldl((s,t)->s*x+t,op(ListTools:-Reverse(L))):

applyhorner([-19,7,-4,6],x);

applyhorner([-19,7,-4,6],3);

```

Output:

```
((6 x - 4) x + 7) x - 19

128

```

```Horner[l_List, x_] := Fold[x #1 + #2 &, 0, l]
Horner[{6, -4, 7, -19}, x]
-> -19 + x (7 + x (-4 + 6 x))

-19 + x (7 + x (-4 + 6 x)) /. x -> 3
-> 128
```

## MATLAB

```function accumulator = hornersRule(x,coefficients)

accumulator = 0;

for i = (numel(coefficients):-1:1)
accumulator = (accumulator * x) + coefficients(i);
end

end
```

Output:

``` hornersRule(3,[-19, 7, -4, 6])

ans =

128
```

Matlab also has a built-in function "polyval" which uses Horner's Method to evaluate polynomials. The list of coefficients is in descending order of power, where as to task spec specifies ascending order.

``` polyval(fliplr([-19, 7, -4, 6]),3)

ans =

128
```

## Maxima

```/* Function horner already exists in Maxima, though it operates on expressions, not lists of coefficients */
horner(5*x^3+2*x+1);
x*(5*x^2+2)+1

/* Here is an implementation */
horner2(p, x) := block([n, y, i],
n: length(p),
y: p[n],
for i: n - 1 step -1 thru 1 do y: y*x + p[i],
y
)\$

horner2([-19, 7, -4, 6], 3);
128

/* Another with rreduce */
horner3(p,x):=rreduce(lambda([a,y],x*y+a),p);
horner3([a,b,c,d,e,f],x);
x*(x*(x*(x*(f*x+e)+d)+c)+b)+a

/* Extension to compute also derivatives up to a specified order.
See William Kahan, Roundoff in Polynomial Evaluation, 1986
http://www.cs.berkeley.edu/~wkahan/Math128/Poly.pdf */

poleval(a, x, [m]) := block(
[n: length(a), v, k: 1],
if emptyp(m) then m: 1 else m: 1 + first(m),
v: makelist(0, m),
v: a[n],
for i from n - 1 thru 1 step -1 do (
for j from m thru 2 step -1 do v[j]: v[j] * x + v[j - 1],
v: v * x + a[i]
),
for i from 2 thru m do (
v[i]: v[i] * k,
k: k * i
),
if m = 1 then first(v) else v
)\$

poleval([0, 0, 0, 0, 1], x, 4);
[x^4, 4 * x^3, 12 * x^2, 24 * x, 24]

poleval([0, 0, 0, 0, 1], x);
x^4
```

## Mercury

```
:- module horner.
:- interface.
:- import_module io.
:- pred main(io::di, io::uo) is det.
:- implementation.
:- import_module int, list, string.

main(!IO) :-
io.format("%i\n", [i(horner(3, [-19, 7, -4, 6]))], !IO).

:- func horner(int, list(int)) = int.

horner(X, Cs) = list.foldr((func(C, Acc) = Acc * X + C), Cs, 0).

```

=={{header|МК-61/52}}== ИП0 1 + П0 ИПE ИПD * КИП0 + ПE ИП0 1 - x=0 04 ИПE С/П

```

''Input:'' Р1:РС - coefficients, Р0 - number of the coefficients, РD - ''x''.

```modula2
MODULE Horner;
FROM RealStr IMPORT RealToStr;

PROCEDURE Horner(coeff : ARRAY OF REAL; x : REAL) : REAL;
VAR
ans : REAL;
i : CARDINAL;
BEGIN
ans := 0.0;
FOR i:=HIGH(coeff) TO 0 BY -1 DO
ans := (ans * x) + coeff[i];
END;
RETURN ans
END Horner;

TYPE A = ARRAY[0..3] OF REAL;
VAR
buf : ARRAY[0..63] OF CHAR;
coeff : A;
ans : REAL;
BEGIN
coeff := A{-19.0, 7.0, -4.0, 6.0};
ans := Horner(coeff, 3.0);
RealToStr(ans, buf);
WriteString(buf);
WriteLn;
END Horner.
```

## NetRexx

```/* NetRexx */
options replace format comments java crossref savelog symbols nobinary

c = [-19, 7, -4, 6] -- # list coefficients of all x^0..x^n in order
n=3
x=3
r=0
loop i=n to 0 by -1
r=r*x+c[i]
End
Say r
Say 6*x**3-4*x**2+7*x-19
```

'''Output:'''

```128
128
```

## Nim

```# You can also just use `reversed` proc from stdlib `algorithm` module
iterator reversed[T](x: openArray[T]): T =
for i in countdown(x.high, x.low):
yield x[i]

proc horner[T](coeffs: openArray[T], x: T): int =
for c in reversed(coeffs):
result = result * x + c

echo horner([-19, 7, -4, 6], 3)
```

```
MODULE HornerRule;
IMPORT
Out;

TYPE
Coefs = POINTER TO ARRAY OF LONGINT;
VAR
coefs: Coefs;

PROCEDURE Eval(coefs: ARRAY OF LONGINT;size,x: LONGINT): LONGINT;
VAR
i,acc: LONGINT;
BEGIN
acc := 0;
FOR i := LEN(coefs) - 1 TO 0 BY -1 DO
acc := acc * x + coefs[i]
END;
RETURN acc
END Eval;

BEGIN
NEW(coefs,4);
coefs := -19;
coefs := 7;
coefs := -4;
coefs := 6;
Out.Int(Eval(coefs^,4,3),0);Out.Ln
END HornerRule.

```

{{out}}

```
128

```

=={{header|Objective-C}}== {{works with|Mac OS X|10.6+}} Using blocks

```

typedef double (^mfunc)(double, double);

@interface NSArray (HornerRule)
- (double)horner: (double)x;
- (NSArray *)reversedArray;
- (double)injectDouble: (double)s with: (mfunc)op;
@end

@implementation NSArray (HornerRule)
- (NSArray *)reversedArray
{
return [[self reverseObjectEnumerator] allObjects];
}

- (double)injectDouble: (double)s with: (mfunc)op
{
double sum = s;
for(NSNumber* el in self) {
sum = op(sum, [el doubleValue]);
}
return sum;
}

- (double)horner: (double)x
{
return [[self reversedArray] injectDouble: 0.0 with: ^(double s, double a) { return s * x + a; } ];
}
@end

int main()
{
@autoreleasepool {

NSArray *coeff = @[@-19.0, @7.0, @-4.0, @6.0];
printf("%f\n", [coeff horner: 3.0]);

}
return 0;
}
```

## Objeck

```
class Horner {
function : Main(args : String[]) ~ Nil {
coeffs := Collection.FloatVector->New();
PolyEval(coeffs, 3)->PrintLine();
}

function : PolyEval(coefficients : Collection.FloatVector , x : Float) ~ Float {
accumulator := coefficients->Get(coefficients->Size() - 1);
for(i := coefficients->Size() - 2; i > -1; i -= 1;) {
accumulator := (accumulator * x) + coefficients->Get(i);
};

return accumulator;
}
}

```

## OCaml

```# let horner coeffs x =
List.fold_left (fun acc coef -> acc * x + coef) 0 (List.rev coeffs) ;;
val horner : int list -> int -> int = <fun>

# let coeffs = [-19; 7; -4; 6] in
horner coeffs 3 ;;
- : int = 128
```

It's also possible to do fold_right instead of reversing and doing fold_left; but fold_right is not tail-recursive.

## Octave

```function r = horner(a, x)
r = 0.0;
for i = length(a):-1:1
r = r*x + a(i);
endfor
endfunction

horner([-19, 7, -4, 6], 3)
```

## ooRexx

```/* Rexx ---------------------------------------------------------------
* 04.03.2014 Walter Pachl
*--------------------------------------------------------------------*/
c = .array~of(-19,7,-4,6) -- coefficients of all x^0..x^n in order
n=3
x=3
r=0
loop i=n+1 to 1 by -1
r=r*x+c[i]
End
Say r
Say 6*x**3-4*x**2+7*x-19
```

'''Output:'''

```128
128
```

## Oz

```declare
fun {Horner Coeffs X}
{FoldL1 {Reverse Coeffs}
fun {\$ Acc Coeff}
Acc*X + Coeff
end}
end

fun {FoldL1 X|Xr Fun}
{FoldL Xr Fun X}
end
in
{Show {Horner [~19 7 ~4 6] 3}}
```

## PARI/GP

Also note that Pari has a polynomial type. Evaluating these is as simple as `subst(P,variable(P),x)`.

```horner(v,x)={
my(s=0);
forstep(i=#v,1,-1,s=s*x+v[i]);
s
};
```

## Pascal

```Program HornerDemo(output);

function horner(a: array of double; x: double): double;
var
i: integer;
begin
horner := a[high(a)];
for i := high(a) - 1 downto low(a) do
horner := horner * x + a[i];
end;

const
poly: array [1..4] of double = (-19.0, 7.0, -4.0, 6.0);

begin
write ('Horner calculated polynomial of 6*x^3 - 4*x^2 + 7*x - 19 for x = 3: ');
writeln (horner (poly, 3.0):8:4);
end.
```

Output:

```Horner calculated polynomial of 6*x^3 - 4*x^2 + 7*x - 19 for x = 3: 128.0000

```

## Perl

```use 5.10.0;
use strict;
use warnings;

sub horner(\@\$){
my (\$coef, \$x) = @_;
my \$result = 0;
\$result = \$result * \$x + \$_ for reverse @\$coef;
return \$result;
}

my @coeff = (-19.0, 7, -4, 6);
my \$x = 3;
say horner @coeff, \$x;
```

===Functional version===

```use strict;
use List::Util qw(reduce);

sub horner(\$\$){
my (\$coeff_ref, \$x) = @_;
reduce { \$a * \$x + \$b } reverse @\$coeff_ref;
}

my @coeff = (-19.0, 7, -4, 6);
my \$x = 3;
print horner(\@coeff, \$x), "\n";
```

===Recursive version===

```sub horner {
my (\$coeff, \$x) = @_;
@\$coeff and
\$\$coeff + \$x * horner( [@\$coeff[1 .. \$#\$coeff]], \$x )
}

print horner( [ -19, 7, -4, 6 ], 3 );
```

## Perl 6

```sub horner ( @coeffs, \$x ) {
@coeffs.reverse.reduce: { \$^a * \$x + \$^b };
}

say horner( [ -19, 7, -4, 6 ], 3 );
```

A recursive version would spare us the need for reversing the list of coefficients. However, special care must be taken in order to write it, because the way Perl 6 implements lists is not optimized for this kind of treatment. [[Lisp]]-style lists are, and fortunately it is possible to emulate them with [http://doc.perl6.org/type/Pair Pairs] and the reduction meta-operator:

```multi horner(Numeric \$c, \$) { \$c }
multi horner(Pair \$c, \$x) {
\$c.key + \$x * horner( \$c.value, \$x )
}

say horner( [=>](-19, 7, -4, 6 ), 3 );
```

We can also use the composition operator:

```sub horner ( @coeffs, \$x ) {
([o] map { \$_ + \$x * * }, @coeffs)(0);
}

say horner( [ -19, 7, -4, 6 ], 3 );
```

{{out}}

```128
```

One advantage of using the composition operator is that it allows for the use of an infinite list of coefficients.

```sub horner ( @coeffs, \$x ) {
map { .(0) }, [\o] map { \$_ + \$x * * }, @coeffs;
}

say horner( [ 1 X/ (1, |[\*] 1 .. *) ], i*pi );

```

{{out}}

```-0.999999999924349-5.28918515954219e-10i
```

## Phix

```function horner(atom x, sequence coeff)
atom res = 0
for i=length(coeff) to 1 by -1 do
res = res*x + coeff[i]
end for
return res
end function

?horner(3,{-19, 7, -4, 6})
```

{{out}}

```
128

```

## PHP

```<?php
function horner(\$coeff, \$x) {
\$result = 0;
foreach (array_reverse(\$coeff) as \$c)
\$result = \$result * \$x + \$c;
return \$result;
}

\$coeff = array(-19.0, 7, -4, 6);
\$x = 3;
echo horner(\$coeff, \$x), "\n";
?>
```

### Functional version

{{works with|PHP|5.3+}}

```<?php
function horner(\$coeff, \$x) {
return array_reduce(array_reverse(\$coeff), function (\$a, \$b) use (\$x) { return \$a * \$x + \$b; }, 0);
}

\$coeff = array(-19.0, 7, -4, 6);
\$x = 3;
echo horner(\$coeff, \$x), "\n";
?>
```

## PicoLisp

```(de horner (Coeffs X)
(let Res 0
(for C (reverse Coeffs)
(setq Res (+ C (* X Res))) ) ) )
```
```: (horner (-19.0 7.0 -4.0 6.0) 3.0)
-> 128
```

## PL/I

```
declare (i, n) fixed binary, (x, value) float; /* 11 May 2010 */
get (x);
get (n);
begin;
declare a(0:n) float;
get list (a);
value = a(n);
do i = n to 1 by -1;
value = value*x + a(i-1);
end;
put (value);
end;

```

## Potion

```horner = (x, coef) :
result = 0
coef reverse each (a) :
result = (result * x) + a
.
result
.

horner(3, (-19, 7, -4, 6)) print
```

## PowerShell

{{works with|PowerShell|4.0}}

```
function horner(\$coefficients, \$x) {
\$accumulator = 0
foreach(\$i in (\$coefficients.Count-1)..0){
\$accumulator = ( \$accumulator * \$x ) + \$coefficients[\$i]
}
\$accumulator
}
\$coefficients = @(-19, 7, -4, 6)
\$x = 3
horner \$coefficients \$x

```

Output:

```
128

```

## Prolog

Tested with SWI-Prolog. Works with other dialects.

```horner([], _X, 0).

horner([H|T], X, V) :-
horner(T, X, V1),
V is V1 * X + H.

```

Output :

``` ?- horner([-19, 7, -4, 6], 3, V).
V = 128.
```

### Functional approach

Works with SWI-Prolog and module lambda, written by Ulrich Neumerkel found there http://www.complang.tuwien.ac.at/ulrich/Prolog-inedit/lambda.pl

```:- use_module(library(lambda)).

% foldr(Pred, Init, List, R).
%
foldr(_Pred, Val, [], Val).
foldr(Pred, Val, [H | T], Res) :-
foldr(Pred, Val, T, Res1),
call(Pred, Res1, H, Res).

f_horner(L, V, R) :-
foldr(\X^Y^Z^(Z is X * V + Y), 0, L, R).

```

===Functional syntax (Ciao)=== Works with Ciao (https://github.com/ciao-lang/ciao) and the fsyntax package:

```
:- module(_, [horner/3], [fsyntax, hiord]).
:- use_module(library(hiordlib)).
horner(L, X) := ~foldr((''(H,V0,V) :- V is V0*X + H), L, 0).

```

## PureBasic

```Procedure Horner(List Coefficients(), b)
Define result
ForEach Coefficients()
result*b+Coefficients()
Next
ProcedureReturn result
EndProcedure
```

'''Implemented as

```NewList a()
Debug Horner(a(),3)
```

'''Outputs 128

## Python

``` def horner(coeffs, x):
acc = 0
for c in reversed(coeffs):
acc = acc * x + c
return acc

>>> horner( (-19, 7, -4, 6), 3)
128
```

### Functional version

``` try: from functools import reduce
except: pass

>>> def horner(coeffs, x):
return reduce(lambda acc, c: acc * x + c, reversed(coeffs), 0)

>>> horner( (-19, 7, -4, 6), 3)
128
```

``` import numpy
>>> numpy.polynomial.polynomial.polyval(3, (-19, 7, -4, 6))
128.0
```

## R

Procedural style:

```horner <- function(a, x) {
y <- 0
for(c in rev(a)) {
y <- y * x + c
}
y
}

cat(horner(c(-19, 7, -4, 6), 3), "\n")
```

Functional style:

```horner <- function(x, v) {
Reduce(v, right=T, f=function(a, b) {
b * x + a
})
}
```

{{out}}

```
> v <- c(-19, 7, -4, 6)
> horner(3, v)
 128

```

## Racket

```
#lang racket
(define (horner x l)
(foldr (lambda (a b) (+ a (* b x))) 0 l))

(horner 3 '(-19 7 -4 6))

```

## Rascal

```import List;

public int horners_rule(list[int] coefficients, int x){
acc = 0;
for( i <- reverse(coefficients)){
acc = acc * x + i;}
return acc;
}
```

A neater and shorter solution using a reducer:

```public int horners_rule2(list[int] coefficients, int x) = (0 | it * x + c | c <- reverse(coefficients));
```

Output:

```horners_rule([-19, 7, -4, 6], 3)
int: 128

rascal>horners_rule2([-19, 7, -4, 6], 3)
int: 128
```

## REBOL

```REBOL []

horner: func [coeffs x] [
result: 0
foreach i reverse coeffs [
result: (result * x) + i
]
return result
]

print horner [-19 7 -4 6] 3
```

## REXX

### version 1

```/*REXX program  demonstrates using    Horner's rule    for   polynomial evaluation.     */
numeric digits 30                                /*use extra numeric precision.         */
parse  arg  x poly                               /*get value of X and the coefficients. */
do deg=0  until  poly==''                 /*get the equation's coefficients.     */
parse var poly c.deg poly;  c.deg=c.deg/1 /*get equation coefficient & normalize.*/
if c.deg>=0  then c.deg= '+'c.deg         /*if ¬ negative, then prefix with a  + */
\$=\$  c.deg                                /*concatenate it to the equation.      */
if deg\==0 & c.deg\=0  then \$=\$'∙x^'deg   /*¬1st coefficient & ¬0?  Append X pow.*/
\$=\$ '  '                                  /*insert some blanks, make it look nice*/
end   /*deg*/
say '         x = '   x
say '    degree = '  deg
say '  equation = '   \$
a=c.deg                                          /*A:  is the accumulator  (or answer). */
do j=deg-1  by -1  for deg;   a=a*x+c.j /*apply Horner's rule to the equations.*/
end   /*j*/
say                                              /*display a blank line for readability.*/
say '    answer = ' a                            /*stick a fork in it,  we're all done. */
```

'''output''' when the following is used for input: 3 -19 7 -4 6

```
x =  3
degree =  3
equation =   -19    +7∙x^1    -4∙x^2    +6∙x^3

```

### version 2

```/* REXX ---------------------------------------------------------------
* 27.07.2012 Walter Pachl
*            coefficients reversed to descending order of power
*            I'm used to x**2+x-3
*            equation formatting prettified (coefficients 1 and 0)
*--------------------------------------------------------------------*/
Numeric Digits 30                /* use extra numeric precision.   */
Parse Arg x poly                 /* get value of x and coefficients*/
rpoly=''
Do p=0 To words(poly)-1
rpoly=rpoly word(poly,words(poly)-p)
End
poly=rpoly
deg=words(poly)-1
pdeg=deg
Do Until deg<0                   /* get the equation's coefficients*/
Parse Var poly c.deg poly      /* in descending order of powers  */
c.deg=c.deg+0                  /* normalize it                   */
If c.deg>0 & deg<pdeg Then     /* positive and not first term    */
prefix='+'                   /*  prefix a + sign.              */
Else prefix=''
Select
When deg=0 Then term=c.deg
When deg=1 Then
If c.deg=1 Then term='x'
Else term=c.deg'*x'
Otherwise
If c.deg=1 Then term='x^'deg
Else term=c.deg'*x^'deg
End
If c.deg<>0 Then               /* build up the equation          */
equ=equ||prefix||term
deg=deg-1
End
a=c.pdeg
Do p=pdeg To 1 By -1             /* apply Horner's rule.           */
pm1=p-1
a=a*x+c.pm1
End
Say '        x = ' x
Say '   degree = ' pdeg
Say ' equation = ' equ
Say ' '
Say '   result = ' a
```

{{out}}

```        x =  3
degree =  3
equation =  6*x^3-4*x^2+7*x-19

result =  128
```

## Ring

```
coefficients = [-19, 7, -4, 6]
see "x =  3" + nl +
"degree =  3" + nl +
"equation =  6*x^3-4*x^2+7*x-19" + nl +
"result = " + horner(coefficients, 3) + nl

func horner coeffs, x
w = 0
for n = len(coeffs) to 1 step -1
w = w * x + coeffs[n]
next
return w

```

Output:

```
x =  3
degree =  3
equation =  6*x^3-4*x^2+7*x-19
result = 128

```

## RLaB

RLaB implements horner's scheme for polynomial evaluation in its built-in function ''polyval''. What is important is that RLaB stores the polynomials as row vectors starting from the highest power just as matlab and octave do.

This said, solution to the problem is

```
>> a = [6, -4, 7, -19]
6            -4             7           -19
>> x=3
3
>> polyval(x, a)
128

```

## Ruby

```def horner(coeffs, x)
coeffs.reverse.inject(0) {|acc, coeff| acc * x + coeff}
end
p horner([-19, 7, -4, 6], 3)  # ==> 128
```

## Rust

```fn horner(v: &[f64], x: f64) -> f64 {
v.iter().rev().fold(0.0, |acc, coeff| acc*x + coeff)
}

fn main() {
let v = [-19., 7., -4., 6.];
println!("result: {}", horner(&v, 3.0));
}
```

A generic version that works with any number type and much more. So much more, it's hard to imagine what that may be useful for.

```extern crate num; // 0.2.0
use num::Zero;

fn horner<Arr, Arg, Out>(v: &[Arr], x: Arg) -> Out
where
Arr: Clone,
Arg: Clone,
Out: Zero + Mul<Arg, Output = Out> + Add<Arr, Output = Out>,
{
v.iter()
.rev()
.fold(Zero::zero(), |acc, coeff| acc * x.clone() + coeff.clone())
}

fn main() {
let v = [-19., 7., -4., 6.];
let output: f64 = horner(&v, 3.0);
println!("result: {}", output);
}
```

## Run BASIC

```coef\$ = "-19 7 -4 6" ' list coefficients of all x^0..x^n in order
x = 3
print horner(coef\$,x)                     '128
print horner("1.2 2.3 3.4 4.5 5.6", 8)    '25478.8
print horner("5 4 3 2 1", 10)             '12345
print horner("1 0 1 1 1 0 0 1", 2)        '157
end

function horner(coef\$,x)
while word\$(coef\$, i + 1) <> ""
i = i + 1                          ' count the num of values
wend
for j = i to 1 step -1
accum = ( accum * x ) + val(word\$(coef\$, j))
next
horner = accum
end function
```

## Sather

```class MAIN is

action(s, e, x:FLT):FLT is
return s*x + e;
end;

horner(v:ARRAY{FLT}, x:FLT):FLT is
rv ::= v.reverse;
return rv.reduce(bind(action(_, _, x)));
end;

main is
#OUT + horner(|-19.0, 7.0, -4.0, 6.0|, 3.0) + "\n";
end;
end;
```

## Scala

```def horner(coeffs:List[Double], x:Double)=
coeffs.reverse.foldLeft(0.0){(a,c)=> a*x+c}

```
```val coeffs=List(-19.0, 7.0, -4.0, 6.0)
println(horner(coeffs, 3))
-> 128.0

```

## Scheme

{{Works with|Scheme|R$^5$RS}}

```(define (horner lst x)
(define (*horner lst x acc)
(if (null? lst)
acc
(*horner (cdr lst) x (+ (* acc x) (car lst)))))
(*horner (reverse lst) x 0))

(display (horner (list -19 7 -4 6) 3))
(newline)
```

Output: 128

```

## Seed7

```seed7
\$ include "seed7_05.s7i";
include "float.s7i";

const type: coeffType is array float;

const func float: horner (in coeffType: coeffs, in float: x) is func
result
var float: res is 0.0;
local
var integer: i is 0;
begin
for i range length(coeffs) downto 1 do
res := res * x + coeffs[i];
end for;
end func;

const proc: main is func
local
const coeffType: coeffs is [] (-19.0, 7.0, -4.0, 6.0);
begin
writeln(horner(coeffs, 3.0) digits 1);
end func;
```

Output:

```
128.0

```

## Sidef

Functional:

```func horner(coeff, x) {
coeff.reverse.reduce { |a,b| a*x + b };
}

say horner([-19, 7, -4, 6], 3);   # => 128
```

Recursive:

```func horner(coeff, x) {
coeff.len > 0
&& (coeff + x*horner(coeff.ft(1), x));
}

say horner([-19, 7, -4, 6], 3);   # => 128
```

## Smalltalk

{{works with|GNU Smalltalk}}

```OrderedCollection extend [
horner: aValue [
^ self reverse inject: 0 into: [:acc :c | acc * aValue + c].
]
].

(#(-19 7 -4 6) asOrderedCollection horner: 3) displayNl.
```

## Standard ML

```(* Assuming real type for coefficients and x *)
fun horner coeffList x = foldr (fn (a, b) => a + b * x) (0.0) coeffList
```

## Swift

```func horner(coefs: [Double], x: Double) -> Double {
return reduce(lazy(coefs).reverse(), 0) { \$0 * x + \$1 }
}

println(horner([-19, 7, -4, 6], 3))
```

{{out}}

```128.0
```

## Tcl

```package require Tcl 8.5
proc horner {coeffs x} {
set y 0
foreach c [lreverse \$coeffs] {
set y [expr { \$y*\$x+\$c }]
}
return \$y
}
```

Demonstrating:

```puts [horner {-19 7 -4 6} 3]
```

Output:

```128
```

## VBA

Note: this function, "Horner", gets its coefficients as a ParamArray which has no specified length. This array collect all arguments after the first one(s). This means you must specify x first, then the coefficients.

```
Public Function Horner(x, ParamArray coeff())
Dim result As Double
Dim ncoeff As Integer

result = 0
ncoeff = UBound(coeff())

For i = ncoeff To 0 Step -1
result = (result * x) + coeff(i)
Next i
Horner = result
End Function

```

Output:

```
print Horner(3, -19, 7, -4, 6)
128

```

## Visual Basic .NET

{{trans|C#}}

```Module Module1

Function Horner(coefficients As Double(), variable As Double) As Double
Return coefficients.Reverse().Aggregate(Function(acc, coeff) acc * variable + coeff)
End Function

Sub Main()
Console.WriteLine(Horner({-19.0, 7.0, -4.0, 6.0}, 3.0))
End Sub

End Module
```

{{out}}

```128
```

## Visual FoxPro

### Coefficients in ascending order.

```
LOCAL x As Double
LOCAL ARRAY aCoeffs
CLEAR
CREATE CURSOR coeffs (c1 I, c2 I, c3 I, c4 I)
INSERT INTO coeffs VALUES (-19,7,-4,6)
SCATTER TO aCoeffs
x = VAL(INPUTBOX("Value of x:", "Value"))
? EvalPoly(@aCoeffs, x)
USE IN coeffs

FUNCTION EvalPoly(c, x As Double) As Double
LOCAL s As Double, k As Integer, n As Integer
n = ALEN(c)
s = 0
FOR k = n TO 1 STEP -1
s = s*x + c[k]
ENDFOR
RETURN s
ENDFUNC

```

### Coefficients in descending order.

```
LOCAL x As Double
LOCAL ARRAY aCoeffs
CLEAR
CREATE CURSOR tmp (c1 I, c2 I, c3 I, c4 I)
INSERT INTO tmp VALUES (6,-4,7,-19)
SCATTER TO aCoeffs
x = VAL(INPUTBOX("Value of x:", "Value"))
? EvalPolyDesc(@aCoeffs, x)
USE IN tmp

FUNCTION EvalPolyDesc(c, x As Double) As Double
LOCAL s As Double, e
s = 0
FOR EACH e IN c FOXOBJECT
s = s*x + e
ENDFOR
RETURN s
ENDFUNC

```

## VBScript

```
Function horners_rule(coefficients,x)
accumulator = 0
For i = UBound(coefficients) To 0 Step -1
accumulator = (accumulator * x) + coefficients(i)
Next
horners_rule = accumulator
End Function

WScript.StdOut.WriteLine horners_rule(Array(-19,7,-4,6),3)

```

{{Out}}

```128
```

## XPL0

```code IntOut=11;

func Horner(X, N, C);   \Return value of polynomial in X
int X, N, C;            \variable, number of terms, coefficient list
int A, I;
[A:= 0;
for I:= N-1 downto 0 do
A:= A*X + C(I);
return A;
];

IntOut(0, Horner(3, 4, [-19, 7, -4, 6]));
```

Output:

```
128

```

## zkl

```fcn horner(coeffs,x)
{ coeffs.reverse().reduce('wrap(a,coeff){ a*x + coeff },0.0) }
```

{{out}}

```
horner(T(-19,7,-4,6), 3).println();
128

```