⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

;Task: Create a program that computes an approximation of the principal Nth root of X as the largest integer less than or equal to R for which RN=X.

──where: N is a positive integer. X is a non-negative integer. R (the root) is a non-negative real number.

No arbitrary limits should be placed on the magnitudes of the numbers involved.

Example: With N=3 and X=8 you would calculate the number '''2''' because $2^3=8$

Example: With N=3 and X=9 you would again calculate the number '''2''' because '''2''' is the largest integer less than or equal to the root R.

Example: With N=2 and X=2×1002,000 you would calculate a large integer consisting of the first 2,001 digits (in order) of the square root of two.

## Arturo

{{trans|D}}

```iRoot [b,n] {
| b<2 -> b

n1 n-1
n2 n
n3 n1
c 1
d (n3+b)/n2
e (n3*d + b/d^n1)/n2
loop \$(and c!=d c!=e) {
c d
d e
e (n3*e + b/e^n1)/n2
}
| d<e -> d
return e
}

print "3rd root of 8 = " + \$(iRoot 8 3)
print "3rd root of 9 = " + \$(iRoot 9 3)
print "First 2001 digits of the square root of 2 = " + \$(iRoot 100^2000*2 2)
```

{{out}}

```3rd root of 8 = 2
3rd root of 9 = 2
First 2001 digits of the square root of 2 = 141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008
```

## C

{{trans|C++}}

```#include <stdio.h>
#include <math.h>

typedef unsigned long long ulong;

ulong root(ulong base, ulong n) {
ulong n1, n2, n3, c, d, e;

if (base < 2) return base;
if (n == 0) return 1;

n1 = n - 1;
n2 = n;
n3 = n1;
c = 1;
d = (n3 + base) / n2;
e = (n3 * d + base / (ulong)powl(d, n1)) / n2;

while (c != d && c != e) {
c = d;
d = e;
e = (n3*e + base / (ulong)powl(e, n1)) / n2;
}

if (d < e) return d;
return e;
}

int main() {
ulong b = (ulong)2e18;

printf("3rd root of 8 = %lld\n", root(8, 3));
printf("3rd root of 9 = %lld\n", root(9, 3));
printf("2nd root of %lld = %lld\n", b, root(b, 2));

return 0;
}
```

{{out}}

```3rd root of 8 = 2
3rd root of 9 = 2
2nd root of 2000000000000000000 = 1414213562
```

## C++

```#include <iostream>
#include <math.h>

unsigned long long root(unsigned long long base, unsigned int n) {
if (base < 2) return base;
if (n == 0) return 1;

unsigned int n1 = n - 1;
unsigned long long n2 = n;
unsigned long long n3 = n1;
unsigned long long c = 1;
auto d = (n3 + base) / n2;
auto e = (n3 * d + base / pow(d, n1)) / n2;

while (c != d && c != e) {
c = d;
d = e;
e = (n3*e + base / pow(e, n1)) / n2;
}

if (d < e) return d;
return e;
}

int main() {
using namespace std;

cout << "3rd root of 8 = " << root(8, 3) << endl;
cout << "3rd root of 9 = " << root(9, 3) << endl;

unsigned long long b = 2e18;
cout << "2nd root of " << b << " = " << root(b, 2) << endl;

return 0;
}
```

{{out}}

```3rd root of 8 = 2
3rd root of 9 = 2
2nd root of 2000000000000000000 = 1414213562
```

## C#

{{trans|Java}}

```using System;
using System.Numerics;

namespace IntegerRoots {
class Program {
static BigInteger IRoot(BigInteger @base, int n) {
if (@base < 0 || n <= 0) {
throw new ArgumentException();
}

int n1 = n - 1;
BigInteger n2 = n;
BigInteger n3 = n1;
BigInteger c = 1;
BigInteger d = (n3 + @base) / n2;
BigInteger e = ((n3 * d) + (@base / BigInteger.Pow(d, n1))) / n2;
while (c != d && c != e) {
c = d;
d = e;
e = (n3 * e + @base / BigInteger.Pow(e, n1)) / n2;
}
if (d < e) {
return d;
}
return e;
}

static void Main(string[] args) {
Console.WriteLine("3rd integer root of 8 = {0}", IRoot(8, 3));
Console.WriteLine("3rd integer root of 9 = {0}", IRoot(9, 3));

BigInteger b = BigInteger.Pow(100, 2000) * 2;
Console.WriteLine("First 2001 digits of the sqaure root of 2: {0}", IRoot(b, 2));
}
}
}
```

{{out}}

```3rd integer root of 8 = 2
3rd integer root of 9 = 2
First 2001 digits of the sqaure root of 2: 141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008
```

## D

{{trans|Kotlin}}

```import std.bigint;
import std.stdio;

auto iRoot(BigInt b, int n) in {
assert(b >=0 && n > 0);
} body {
if (b < 2) return b;
auto n1 = n - 1;
auto n2 = BigInt(n);
auto n3 = BigInt(n1);
auto c = BigInt(1);
auto d = (n3 + b) / n2;
auto e = (n3 * d + b / d^^n1) / n2;
while (c != d && c != e) {
c = d;
d = e;
e = (n3 * e + b / e^^n1) / n2;
}
if (d < e) return d;
return e;
}

void main() {
auto b = BigInt(8);
writeln("3rd root of 8 = ", b.iRoot(3));
b = BigInt(9);
writeln("3rd root of 9 = ", b.iRoot(3));
b = BigInt(100)^^2000*2;
writeln("First 2001 digits of the square root of 2: ", b.iRoot(2));
}
```

{{out}}

```3rd root of 8 = 2
3rd root of 9 = 2
First 2001 digits of the square root of 2: 141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008
```

## Elixir

{{trans|Ruby}}

```defmodule Integer_roots do
def root(_, b) when b<2, do: b
def root(a, b) do
a1 = a - 1
f = fn x -> (a1 * x + div(b, power(x, a1))) |> div(a) end
c = 1
d = f.(c)
e = f.(d)
until(c, d, e, f)
end

defp until(c, d, e, _) when c in [d, e], do: min(d, e)
defp until(_, d, e, f), do: until(d, e, f.(e), f)

defp power(_, 0), do: 1
defp power(n, m), do: Enum.reduce(1..m, 1, fn _,acc -> acc*n end)

IO.puts root(3,8)
IO.puts root(3,9)
IO.puts "First 2,001 digits of the square root of two:"
IO.puts root(2, 2 * power(100, 2000))
end
end

```

{{out}}

```
2
2
First 2,001 digits of the square root of two:
141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008

```

## F#

{{trans|C#}}

```open System

let iroot (base_ : bigint) n =
if base_ < bigint.Zero || n <= 0 then

let n1 = n - 1
let n2 = bigint n
let n3 = bigint n1
let mutable c = bigint.One
let mutable d = (n3 + base_) / n2
let mutable e = ((n3 * d) + (base_ / bigint.Pow(d, n1))) / n2
while c <> d && c <> e do
c <- d
d <- e
e <- (n3 * e + base_ / bigint.Pow(e, n1)) / n2

if d < e then
d
else
e

[<EntryPoint>]
let main _ =
Console.WriteLine("3rd integer root of 8 = {0}", (iroot (bigint 8) 3))
Console.WriteLine("3rd integer root of 9 = {0}", (iroot (bigint 9) 3))

let b = bigint.Pow(bigint 100, 2000) * (bigint 2)
Console.WriteLine("First 2001 digits of the sqaure root of 2: {0}", (iroot b 2))

0 // return an integer exit code
```

{{out}}

```3rd integer root of 8 = 2
3rd integer root of 9 = 2
First 2001 digits of the sqaure root of 2: 141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008
```

## Go

### int

```package main

import "fmt"

func main() {
fmt.Println(root(3, 8))
fmt.Println(root(3, 9))
fmt.Println(root(2, 2e18))
}

func root(N, X int) int {
for r := 1; ; {
x := X
for i := 1; i < N; i++ {
x /= r
}
x -= r
// A small complication here is that Go performs truncated integer
// division but for negative values of x, Δr in the line below needs
// to be computed as the floor of x / N.  The following % test and
// correction completes the floor division operation (for positive N.)
Δr := x / N
if x%N < 0 {
Δr--
}
if Δr == 0 {
return r
}
r += Δr
}
}
```

{{out}}

```
2
2
1414213562

```

### big.Int

```package main

import (
"fmt"
"math/big"
)

func main() {
fmt.Println(root(3, "8"))
fmt.Println(root(3, "9"))
fmt.Println(root(2, "2000000000000000000"))
fmt.Println(root(2, "200000000000000000000000000000000000000000000000000"))
}

var one = big.NewInt(1)

func root(N int, X string) *big.Int {
var xx, x, Δr big.Int
xx.SetString(X, 10)
nn := big.NewInt(int64(N))
for r := big.NewInt(1); ; {
x.Set(&xx)
for i := 1; i < N; i++ {
x.Quo(&x, r)
}
// big.Quo performs Go-like truncated division and would allow direct
// translation of the int-based solution, but package big also provides
// Div which performs Euclidean rather than truncated division.
// This gives the desired result for negative x so the int-based
// correction is no longer needed and the code here can more directly
Δr.Div(x.Sub(&x, r), nn)
if len(Δr.Bits()) == 0 {
return r
}
}
}
```

{{out}}

```
2
2
1414213562
14142135623730950488016887

```

{{trans|Python}}

```root :: Integer -> Integer -> Integer
root a b = findAns \$ iterate (\x -> (a1 * x + b `div` (x ^ a1)) `div` a) 1
where
a1 = a - 1
findAns (x:xs@(y:z:_))
| x == y || x == z = min y z
| otherwise = findAns xs

main :: IO ()
main = do
print \$ root 3 8
print \$ root 3 9
print \$ root 2 (2 * 100 ^ 2000) -- first 2001 digits of the square root of 2
```

{{out}}

```2
2
141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008
```

## J

`<.@%:` satisfies this task. Left argument is the task's N, right argument is the task's X:

'''Note:''' Depending on '''''N''''', one must select the proper number of digits, that is, ''2000'', ''2001'', ''2002'', etc..., otherwise the result will be the digits of the nth root of 20, 2000, etc...
For example, If you use "3 <.@%: (210x^2200'''0''')" instead of "3 <.@%: (210x^2200'''1''')", you will get an output starting with "271441761659490657151808946...", which are the first digits of the cube root of 20, not 2.

```   9!:37]0 4096 0 222 NB. set display truncation sufficiently high for our results

2 <.@%: (2*10x^2*2000)
141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008
3 <.@%: (2*10x^2*2001)
125992104989487316476721060727822835057025146470150798008197511215529967651395948372939656243625509415431025603561566525939902404061373722845911030426935524696064261662500097747452656548030686718540551868924587251676419937370969509838278316139915512931369536618394746344857657030311909589598474110598116290705359081647801147352132548477129788024220858205325797252666220266900566560819947156281764050606648267735726704194862076214429656942050793191724414809204482328401274703219642820812019057141889964599983175038018886895942020559220211547299738488026073636974178877921579846750995396300782609596242034832386601398573634339097371265279959919699683779131681681544288502796515292781076797140020406056748039385612517183570069079849963419762914740448345402697154762285131780206438780476493225790528984670858052862581300054293885607206097472230406313572349364584065759169169167270601244028967000010690810353138529027004150842323362398893864967821941498380270729571768128790014457462271477023483571519055067220848184850092872392092826466067171742477537097370300127429180940544256965920750363575703751896037074739934610144901451576359604711119738452991329657262589048609788561801386773836157730098659836608059757560127871214868562426845564116515581793532280158962912994450040120842541416015752584162988142309735821530604057724253836453253356
5 <.@%: (2*10x^2*2000)
114869835499703500679862694677792758944385088909779750551371111849360320625351305681147311301150847391457571782825280872990018972855371267615994917020637676959403854539263226492033301322122190625130645468320078386350285806907949085127708283982797043969640382563667945344431106523789654147255972578315704103326302050272017414235255993151553782375173884359786924137881735354092890268530342009402133755822717151679559278360263800840317501093689917495888199116488588871447782240220513546797235647742625493141141704109917646404017146978939243424915943739448283626010758721504375406023613552985026793701507511351368254645700768390780390334017990233124030682358360249760098999315658413563173197024899154512108923313999675829872581317721346549115423634135836394159076400636688679216398175376716152621781331348
7 <.@%: (2*10x^2*2002)
1104089513673812337649505387623344721325326600780124165514532464142106322880380980716598289886302005146897159065579931253969214680430855796510648058388081961639198643922155838145512343974763395078906646859029211806139421440562835192195007740110439139292223389537903767320705032063903809884944457070845279252405827307254864679671836816589429995916822424590361601902611505690284386526869351720866524568004847701822070064334667580822044823960984514550922242408608825451442062850448298384317793721518676765230683406727811327252052334859250776811047221310365241746671294399050316
```

## Java

{{trans|Kotlin}}

```import java.math.BigInteger;

public class IntegerRoots {
private static BigInteger iRoot(BigInteger base, int n) {
if (base.compareTo(BigInteger.ZERO) < 0 || n <= 0) {
throw new IllegalArgumentException();
}

int n1 = n - 1;
BigInteger n2 = BigInteger.valueOf(n);
BigInteger n3 = BigInteger.valueOf(n1);
BigInteger c = BigInteger.ONE;
while (!c.equals(d) && !c.equals(e)) {
c = d;
d = e;
}
if (d.compareTo(e) < 0) {
return d;
}
return e;
}

public static void main(String[] args) {
BigInteger b = BigInteger.valueOf(8);
System.out.print("3rd integer root of 8 = ");
System.out.println(iRoot(b, 3));

b = BigInteger.valueOf(9);
System.out.print("3rd integer root of 9 = ");
System.out.println(iRoot(b, 3));

b = BigInteger.valueOf(100).pow(2000).multiply(BigInteger.valueOf(2));
System.out.print("First 2001 digits of the square root of 2: ");
System.out.println(iRoot(b, 2));
}
}
```

{{out}}

```3rd integer root of 8 = 2
3rd integer root of 9 = 2
First 2001 digits of the square root of 2: 141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008
```

## Julia

{{works with|Julia|0.6}} {{trans|Python}}

```function iroot(a, b)
if b < 2 return b end
a1, c = a - 1, 1
d = (a1 * c + b ÷ (c ^ a1)) ÷ a
e = (a1 * d + b ÷ (d ^ a1)) ÷ a
while c != d != e
c, d, e = d, e, (a1 * e + b ÷ (e ^ a1)) ÷ a
end

return min(d, e)
end

println("First 2,001 digits of the square root of two:\n", iroot(2, 2 * big(100) ^ 2000))
```

{{out}}

```First 2,001 digits of the square root of two:
141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008
```

## Kotlin

{{trans|Python}}

```// version 1.1.2

import java.math.BigInteger

val bigZero = BigInteger.ZERO
val bigOne  = BigInteger.ONE
val bigTwo  = BigInteger.valueOf(2L)

fun BigInteger.iRoot(n: Int): BigInteger {
require(this >= bigZero && n > 0)
if (this < bigTwo) return this
val n1 = n - 1
val n2 = BigInteger.valueOf(n.toLong())
val n3 = BigInteger.valueOf(n1.toLong())
var c = bigOne
var d = (n3 + this) / n2
var e = (n3 * d + this / d.pow(n1)) / n2
while (c != d && c != e) {
c = d
d = e
e = (n3 * e + this / e.pow(n1)) / n2
}
return if (d < e) d else e
}

fun main(args: Array<String>) {
var b: BigInteger
b = BigInteger.valueOf(8L)
println("3rd integer root of 8 = \${b.iRoot(3)}\n")
b = BigInteger.valueOf(9L)
println("3rd integer root of 9 = \${b.iRoot(3)}\n")
b = BigInteger.valueOf(100L).pow(2000) * bigTwo
println("First 2001 digits of the square root of 2:")
println(b.iRoot(2))
}
```

{{out}}

```
3rd integer root of 8 = 2

3rd integer root of 9 = 2

First 2001 digits of the square root of 2:
141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008

```

## Lua

{{trans|C}}

```function root(base, n)
if base < 2 then return base end
if n == 0 then return 1 end

local n1 = n - 1
local n2 = n
local n3 = n1
local c = 1
local d = math.floor((n3 + base) / n2)
local e = math.floor((n3 * d + base / math.pow(d, n1)) / n2)

while c ~= d and c ~= e do
c = d
d = e
e = math.floor((n3 * e + base / math.pow(e, n1)) / n2)
end

if d < e then return d end
return e
end

-- main
local b = 2e18

print("3rd root of 8 = " .. root(8, 3))
print("3rd root of 9 = " .. root(9, 3))
print("2nd root of " .. b .. " = " .. root(b, 2))
```

{{out}}

```3rd root of 8 = 2
3rd root of 9 = 2
2nd root of 2e+018 = 1414213562
```

```MODULE IntegerRoot;
FROM FormatString IMPORT FormatString;

PROCEDURE pow(b : LONGCARD; p : CARDINAL) : LONGCARD;
VAR
result : LONGCARD;
BEGIN
result := 1;
WHILE p > 0 DO
IF p MOD 2 = 1 THEN
DEC(p);
result := result * b;
END;
p := p / 2;
b := b * b
END;
RETURN result
END pow;

PROCEDURE root(base : LONGCARD; n : CARDINAL) : LONGCARD;
VAR
n1,n2,n3,c,d,e : LONGCARD;
BEGIN
IF base < 2 THEN RETURN base END;
IF n = 0 THEN RETURN 1 END;

n1 := n - 1;
n2 := n;
n3 := n1;
c := 1;
d := (n3 + base) / n2;
e := (n3 * d + base / pow(d, n1)) / n2;

WHILE (c # d) AND (c # e) DO
c := d;
d := e;
e := (n3 * e + base / pow(e, n1)) / n2
END;

IF d < e THEN RETURN d END;
RETURN e
END root;

(* main *)
VAR
buf : ARRAY[0..63] OF CHAR;
b : LONGCARD;
BEGIN
FormatString("3rd root of 8 = %u\n", buf, root(8, 3));
WriteString(buf);

FormatString("3rd root of 9 = %u\n", buf, root(9, 3));
WriteString(buf);

b := 2000000000000000000;
FormatString("2nd root of %u = %u\n", buf, b, root(b, 2));
WriteString(buf);

END IntegerRoot.
```

## PARI/GP

```sqrtnint(8,3)
sqrtnint(9,3)
sqrtnint(2*100^2000,2)
```

{{out}}

```%1 = 2
%2 = 2
%3 = 141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008
```

## Perl

{{trans|Ruby}}

```use bigint;

sub integer_root {
our(\$a,\$b) = @_;
our \$a1 = \$a - 1;
my \$c = 1;
my \$d = f(\$c);
my \$e = f(\$d);
(\$c, \$d, \$e) = (\$d, \$e, f(\$e)) until \$c==\$d || \$c==\$e;
return \$d < \$e ? \$d : \$e;

sub f { (\$a1*\$_[0]+\$b/\$_[0]**\$a1)/\$a }
}

print integer_root( 3, 8), "\n";
print integer_root( 3, 9), "\n";
print integer_root( 2, 2 * 100 ** 2000), "\n";
```

{{out}}

```2
2
141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008
```

### Using a module

If using bigints, we can do this directly, which will be much faster than the method above:

```use bigint;
print 8->babs->broot(3),"\n";
print 9->babs->broot(3),"\n";
print +(2*100**2000)->babs->broot(2),"\n";
```

The `babs` calls are only necessary if the input might be non-negative.

Even faster, using a module:

```use bigint;
use ntheory "rootint";
print rootint(8,3),"\n";
print rootint(9,3),"\n";
print rootint(2*100**2000,2),"\n";
```

Both generate the same output as above.

## Perl 6

{{trans|Python}}

```sub integer_root ( Int \$p where * >= 2, Int \$n --> Int ) {
my Int \$d = \$p - 1;
my \$guess = 10**(\$n.chars div \$p);
my \$iterator = { ( \$d * \$^x   +   \$n div (\$^x ** \$d) ) div \$p };
my \$endpoint = {      \$^x      ** \$p <= \$n
and (\$^x + 1) ** \$p >  \$n };
min (+\$guess, \$iterator ... \$endpoint)[*-1, *-2];
}

say integer_root( 2, 2 * 100 ** 2000 );
```

{{out}}

```141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008

```

## Phix

```include mpfr.e

function integer_root(integer n, object A)
-- yields the nth root of A, adapted from https://en.wikipedia.org/wiki/Nth_root_algorithm
mpz res = mpz_init(1),
x = mpz_init(),
delta = mpz_init()
A = mpz_init(A)
while true do
mpz_set(x,A)
mpz_pow_ui(delta,res,n-1)
mpz_fdiv_q(x, x, delta)
mpz_sub(delta,x,res)
{} = mpz_fdiv_q_ui(delta, delta, n)
if mpz_cmp_si(delta,0)=0 then exit end if
end while
return mpz_get_str(res)
end function

printf(1,"3rd root of 8 = %s\n", {integer_root(3,8)})
printf(1,"3rd root of 9 = %s\n", {integer_root(3,9)})
string s = integer_root(2,"2"&repeat('0',4000))
printf(1,"First digits of the square root of 2: %s\n", {shorten(s)})
s = integer_root(3,"2"&repeat('0',6000))
printf(1,"First digits of the  cube  root of 2: %s\n", {shorten(s)})
```

{{out}}

```
3rd root of 8 = 2
3rd root of 9 = 2
First digits of the square root of 2: 1414213562373095048...7107578486024636008 (2001 digits)
First digits of the  cube  root of 2: 1259921049894873164...2546828353183047061 (2001 digits)

```

## Python

```def root(a, b):
if b < 2:
return b
a1 = a - 1
c = 1
d = (a1 * c + b // (c ** a1)) // a
e = (a1 * d + b // (d ** a1)) // a
while c not in (d, e):
c, d, e = d, e, (a1 * e + b // (e ** a1)) // a
return min(d, e)

print("First 2,001 digits of the square root of two:\n{}".format(
root(2, 2 * 100 ** 2000)
))
```

{{out}}

```First 2,001 digits of the square root of two:
141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008
```

## Racket

See [[#Scheme]], there’s very little can be done to improve it.

## REXX

No error checking is performed to ensure the root is a non-zero integer.

This version incorporates some optimization when computing square roots (because '''M''' is unity, there is no need to

multiply the guess ['''G'''] by unity, and no need to compute the guess to the 1st power, bypassing some trivial arithmetic).

### integer result only

```/*REXX program calculates the Nth root of a number to a specified number of decimal digs*/
parse arg num root digs .                        /*obtain the optional arguments from CL*/
if  num=='' |  num==","  then  num=   2          /*Not specified?  Then use the default.*/
if root=='' | root==","  then root=   2          /* "      "         "   "   "     "    */
if digs=='' | digs==","  then digs=2001          /* "      "         "   "   "     "    */
numeric digits digs                              /*utilize this number of decimal digits*/
say 'number='  num                               /*display the number that will be used.*/
say '  root='  root                              /*   "     "    root   "    "   "   "  */
say 'digits='  digs                              /*   "    dec. digits  "    "   "   "  */
say                                              /*   "    a blank line.                */
say 'result:';       say rootI(num, root, digs)  /*   "    what it is; display the root.*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
rootI: procedure; parse arg x,root,p             /*obtain the numbers,  Y is the root #.*/
numeric digits p*root+length(x)           /*double the number of digits  + guard.*/
if x<2  then return x                     /*B is one or zero?  Return that value.*/
z=x*(10**root)**p                         /*calculate the number with appended 0s*/
m=root - 1                                /*utilize a diminished (by one) power. */
g=(1 + z) % root                          /*take a stab at the first root guess. */
old=.                                     /* [↓]  When M=1, a fast path for sqrt.*/
if m==1  then  do  until old==g;   old=g;     g=(g   + z %  g     )  % root;    end
else  do  until old==g;   old=g;     g=(g*m + z % (g**m) )  % root;    end
return left(g,p)                          /*return the  Nth root of Z to invoker.*/
```

'''output''' when the defaults are being used:

```
number= 2
root= 2
digits= 2001

result:
14142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358314132226659275055927557999505011527820605714
70109559971605970274534596862014728517418640889198609552329230484308714321450839762603627995251407989687253396546331808829640620615258352395054745750287759961729835575220337531857011354374603408498847
16038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016
20758474922657226002085584466521458398893944370926591800311388246468157082630100594858704003186480342194897278290641045072636881313739855256117322040245091227700226941127573627280495738108967504018369
86836845072579936472906076299694138047565482372899718032680247442062926912485905218100445984215059112024944134172853147810580360337107730918286931471017111168391658172688941975871658215212822951848847
20896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558
69568685964595155501644724509836896036887323114389415576651040883914292338113206052433629485317049915771756228549741438999188021762430965206564211827316726257539594717255934637238632261482742622208671
15583959992652117625269891754098815934864008345708518147223181420407042650905653233339843645786579679651926729239987536661721598257886026336361782749599421940377775368142621773879919455139723127406689
83299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685
40575867999670121372239475821426306585132217408832382947287617393647467837431960001592188807347857617252211867490424977366929207311096369721608933708661156734585334833295254675851644710757848602463600
8

```

### true results

Negative and complex roots are supported. The expressed root may have a decimal point.

```/*REXX program calculates the Nth root of a number to a specified number of decimal digs*/
parse arg num root digs .                        /*obtain the optional arguments from CL*/
if  num=='' |  num==","  then  num=   2          /*Not specified?  Then use the default.*/
if root=='' | root==","  then root=   2          /* "      "         "   "   "     "    */
if digs=='' | digs==","  then digs=2001          /* "      "         "   "   "     "    */
numeric digits digs                              /*utilize this number of decimal digits*/
say 'number='  num                               /*display the number that will be used.*/
say '  root='  root                              /*   "     "    root   "    "   "   "  */
say 'digits='  digs                              /*   "    dec. digits  "    "   "   "  */
say                                              /*   "    a blank line.                */
say 'result:';           say iRoot(num, root)    /*   "    what it is; display the root.*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
iRoot: procedure; parse arg x 1 ox,    y 1 oy    /*obtain the numbers,  Y is the root #.*/
i=;                         x=abs(x);  y=abs(y)  /*use the absolute values of  X and Y. */
if ox<0 & oy//2==0  then do;  i='i';  ox=x;  end /*if the results will be imaginary ··· */
od=digits()                                      /*the current number of decimal digits.*/
a=od+9                                           /*bump the decimal digits by  nine.    */
numeric form                                     /*number will be in  exponential  form.*/
parse value format(x,2,1,,0) 'E0' with ? 'E' _ . /*obtain exponent so we can do division*/
g=(?/y'E'_ % y)  +  (x>1)                        /*this is a best first guess of a root.*/
m=y-1                                            /*define a (fast) variable for later.  */
do  until d==a                      /*keep computing 'til we're at max digs*/
d=min(d+d,a);           dm=d-2      /*bump number of (growing) decimal digs*/
numeric digits d                    /*increase the number of decimal digits*/
o=0                                 /*set the old value to zero (1st time).*/
do  until o=g;      o=g         /*keep computing as long as  G changes.*/
g=format((m*g**y+x)/y/g**m,,dm) /*compute the  Yth  root of  X.        */
end   /*until o=g*/
end       /*until d==a*/
_=g*sign(ox)                                     /*change the sign of the result, maybe.*/
numeric digits od                                /*set  numeric digits  to the original.*/
if oy<0  then return (1/_)i                      /*Is the root negative?  Use reciprocal*/
return (_/1)i                      /*return the  Yth root of X to invoker.*/
```

'''output''' when the defaults are being used:

```
number= 2
root= 2
digits= 2001

result:
1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641572735013846230912297024924836055850737212644121497099935831413222665927505592755799950501152782060571
47010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884
71603868999706990048150305440277903164542478230684929369186215805784631115966687130130156185689872372352885092648612494977154218334204285686060146824720771435854874155657069677653720226485447015858801
62075847492265722600208558446652145839889394437092659180031138824646815708263010059485870400318648034219489727829064104507263688131373985525611732204024509122770022694112757362728049573810896750401836
98683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884
72089694633862891562882765952635140542267653239694617511291602408715510135150455381287560052631468017127402653969470240300517495318862925631385188163478001569369176881852378684052287837629389214300655
86956868596459515550164472450983689603688732311438941557665104088391429233811320605243362948531704991577175622854974143899918802176243096520656421182731672625753959471725593463723863226148274262220867
11558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668
98329989895386728822856378697749662519966583525776198939322845344735694794962952168891485492538904755828834526096524096542889394538646625744927556381964410316979833061852019379384940057156333720548068
54057586799967012137223947582142630658513221740883238294728761739364746783743196000159218880734785761725221186749042497736692920731109636972160893370866115673458533483329525467585164471075784860246360
08

```

'''output''' when using the input of: -81

```
number= -81
root= 2
digits= 2001

result:
9i

```

'''output''' when using the input of: 4 -2

```
number= 4
root= -2
digits= 2001

result:
0.5

```

## Ring

```
# Project : Integer roots

see root(3, 8)
see root(3, 9)
see root(4, 167)

func root(n, x)
for nr = floor(sqrt(x)) to 1 step -1
if pow(nr, n) <= x
see nr + nl
exit
ok
next

```

Output:

```
2
2
3

```

## Ruby

{{trans|Python, zkl}}

```def root(a,b)
return b if b<2
a1, c = a-1, 1
f = -> x {(a1*x+b/(x**a1))/a}  # a lambda with argument x
d = f[c]
e = f[d]
c, d, e = d, e, f[e] until [d,e].include?(c)
[d,e].min
end

puts "First 2,001 digits of the square root of two:"
puts root(2, 2*100**2000)

```

{{out}}

```First 2,001 digits of the square root of two:
14142135623730950488016887242096(...)46758516447107578486024636008
```

## Scala

===Functional solution, tail recursive, no immutables===

```import scala.annotation.tailrec

object IntegerRoots extends App {

println("3rd integer root of 8 = " + iRoot(8, 3))

println("3rd integer root of 9 = " + iRoot(9, 3))

val result = iRoot(BigInt(100).pow(2000) * BigInt(2), 2)
println(s"All \${result.toString.length} digits of the square root of 2: \n\$result")

private def iRoot(base: BigInt, degree: Int): BigInt = {
require(base >= 0 && degree > 0,
"Base has to be non-negative while the degree must be positive.")

val (n1, n2) = (degree - 1, BigInt(degree))
val d = (n1 + base) / n2

@tailrec
def loop(c: BigInt, d: BigInt, e: BigInt): BigInt = {
if (c == d || c == e) if (d < e) d else e
else loop(d, e, (n1 * e + (base / e.pow(n1))) / n2)
}

loop(1, (n1 + base) / n2, (n1 * d + (base / d.pow(n1))) / n2)
}

}
```

{{Out}}See it running in your browser by [https://scalafiddle.io/sf/bVwlHfa/0 ScalaFiddle (JavaScript, non JVM)] or by [https://scastie.scala-lang.org/0T93IhLVRGiYfuKpW7DTUg Scastie (JVM)].

## Scheme

{{trans|Python}}

```(define (root a b)
(define // quotient)
(define (y a a1 b c d e)
(if (or (= c d) (= c e))
(min d e)
(y a a1 b d e (// (+ (* a1 e) (// b (expt e a1))) a))))
(if (< b 2)
b
(let* ((a1 (- a 1))
(c 1)
(d (// (+ (* a1 c) (// b (expt c a1))) a))
(e (// (+ (* a1 d) (// b (expt d a1))) a)))
(y a a1 b c d e))))

(display "First 2,001 digits of the cube root of two:\n")
(display (root 3 (* 2 (expt 1000 2000))))
```

{{out}}

```First 2,001 digits of the cube root of two:
125992104989487316476721060727822835057025146470150798008197511215529967651395948372939656243625509415431025603561566525939902404061373722845911030426935524696064261662500097747452656548030686718540551868924587251676419937370969509838278316139915512931369536618394746344857657030311909589598474110598116290705359081647801147352132548477129788024220858205325797252666220266900566560819947156281764050606648267735726704194862076214429656942050793191724414809204482328401274703219642820812019057141889964599983175038018886895942020559220211547299738488026073636974178877921579846750995396300782609596242034832386601398573634339097371265279959919699683779131681681544288502796515292781076797140020406056748039385612517183570069079849963419762914740448345402697154762285131780206438780476493225790528984670858052862581300054293885607206097472230406313572349364584065759169169167270601244028967000010690810353138529027004150842323362398893864967821941498380270729571768128790014457462271477023483571519055067220848184850092872392092826466067171742477537097370300127429180940544256965920750363575703751896037074739934610144901451576359604711119738452991329657262589048609788561801386773836157730098659836608059757560127871214868562426845564116515581793532280158962912994450040120842541416015752584162988142309735821530604057724253836453253356595511725228557956227724036656284687590154306675351908548451181817520429124123378096317252135754114181146612736604578303605744026513096070968164006888185657231009008428452608641405950336900307918699355691335183428569382625543135589735445023330285314932245513412195545782119650083395771426685063328419619686512109255789558850899686190154670043896878665545309854505763765036008943306510356935777537249548436821370317162162183495809356208726009626785183418345652239744540004476021778894208183802786665306532663261864116007400747475473558527701689502063754132232329694243701742343491617690600723853902227681129777413872079823430391031628546452083111122546828353183047061
```

## Sidef

{{trans|Ruby}}

```func root(a, b) {
b < 2 && return(b)
var (a1, c) = (a-1, 1)
var f = {|x| (a1*x + b//(x**a1)) // a }
var d = f(c)
var e = f(d)
while (c !~ [d, e]) {
(c, d, e) = (d, e, f(e))
}
[d, e].min
}

say "First 2,001 digits of the square root of two:"
say root(2, 2 * 100**2000)
```

{{out}}

```
First 2,001 digits of the square root of two:
14142135623730950488016887242096980[...]32952546758516447107578486024636008

```

## Tcl

Tcl is not made for number crunching. The execution is quite slow compared to compiled languages.

On the other hand, everything is very straightforward, no libraries necessary.

```
proc root {this n} {
if {\$this < 2} {return \$this}
set n1 [expr \$n - 1]
set n2 \$n
set n3 \$n1
set c 1
set d [expr (\$n3 + \$this) / \$n2]
set e [expr (\$n3 * \$d + \$this / (\$d ** \$n1)) / \$n2]
while {\$c != \$d && \$c != \$e} {
set c \$d
set d \$e
set e [expr (\$n3 * \$e + \$this / (\$e ** \$n1)) / \$n2]
}
return [expr min(\$d, \$e)]
}

puts [root 8 3]
puts [root 9 3]
puts [root [expr 2* (100**2000)] 2]

```

{{out}}

```
2
2
141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008

```

## Visual Basic .NET

{{libheader|System.Numerics}} From the method described on [https://en.wikipedia.org/wiki/Nth_root_algorithm the Wikipedia page]. Included is an Integer Square Root function to compare results to the Integer Nth Square root function. One must choose the exponents carefully, otherwise one will obtain the digits of the nth root of 20, 200, 2000, etc..., instead of 2. For example, 4008 was chosen because it works for both ''n = 2'' and ''n = 3'', whereas 4004 was chosen for ''n = 7''

```Imports System
Imports System.Numerics
Imports Microsoft.VisualBasic.Strings

Public Module Module1

Public Function IntSqRoot(v As BigInteger) As BigInteger
Dim digs As Integer = Math.Max(0, v.ToString().Length / 2 - 1)
IntSqRoot = BigInteger.Parse("3" & StrDup(digs, "0"))
Dim term As BigInteger
Do
term = v / IntSqRoot
If Math.Abs(CDbl(term - IntSqRoot)) < 2 Then Exit Do
IntSqRoot = (IntSqRoot + term) / 2
Loop Until False
End Function

Public Function IntNthRoot(n As Integer, v As BigInteger) As BigInteger
Dim digs As Integer = Math.Max(0, v.ToString().Length / n - 1)
IntNthRoot = BigInteger.Parse(If(digs > 1, 3, 2).ToString() & StrDup(digs, "0"))
Dim va As BigInteger, dr As BigInteger
Do
va = v : For i As Integer = 2 To n : va /= IntNthRoot : Next
va -= IntNthRoot
dr = va / n : If dr = 0 Then Exit Do
IntNthRoot += dr
Loop Until False
End Function

Public Sub Main()
Dim b As BigInteger = BigInteger.Parse("2" & StrDup(4008, "0"))
Console.WriteLine("Integer Cube Root of 8:")
Console.WriteLine(IntNthRoot(3, 8).ToString()) ' given example
Console.WriteLine("Integer Cube Root of 9:")
Console.WriteLine(IntNthRoot(3, 9).ToString()) ' given example
Console.WriteLine("Integer Square Root of 2, (actually 2 * 10 ^ 4008, square root method):")
Console.WriteLine(IntSqRoot(b).ToString()) ' reality check
Console.WriteLine("Integer Square Root of 2, (actually 2 * 10 ^ 4008, nth root method):")
Console.WriteLine(IntNthRoot(2, b).ToString()) ' given example
Console.WriteLine("Integer Cube Root of 2, (actually 2 * 10 ^ 4008):")
Console.WriteLine(IntNthRoot(3, b).ToString()) ' bonus example
b /= 10000
Console.WriteLine("Integer 7th Root of 2, (actually 2 * 10 ^ 4004):")
Console.WriteLine(IntNthRoot(7, b).ToString()) ' bonus example
End Sub

End Module

```

{{out}}

```Integer Cube Root of 8:
2
Integer Cube Root of 9:
2
Integer Square Root of 2, (actually 2 * 10 ^ 4008, square root method):
1414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641572735013846230912297024924836055850737212644121497099935831413222665927505592755799950501152782060571470109559971605970274534596862014728517418640889198609552329230484308714321450839762603627995251407989687253396546331808829640620615258352395054745750287759961729835575220337531857011354374603408498847160386899970699004815030544027790316454247823068492936918621580578463111596668713013015618568987237235288509264861249497715421833420428568606014682472077143585487415565706967765372022648544701585880162075847492265722600208558446652145839889394437092659180031138824646815708263010059485870400318648034219489727829064104507263688131373985525611732204024509122770022694112757362728049573810896750401836986836845072579936472906076299694138047565482372899718032680247442062926912485905218100445984215059112024944134172853147810580360337107730918286931471017111168391658172688941975871658215212822951848847208969463386289156288276595263514054226765323969461751129160240871551013515045538128756005263146801712740265396947024030051749531886292563138518816347800156936917688185237868405228783762938921430065586956868596459515550164472450983689603688732311438941557665104088391429233811320605243362948531704991577175622854974143899918802176243096520656421182731672625753959471725593463723863226148274262220867115583959992652117625269891754098815934864008345708518147223181420407042650905653233339843645786579679651926729239987536661721598257886026336361782749599421940377775368142621773879919455139723127406689832998989538672882285637869774966251996658352577619893932284534473569479496295216889148549253890475582883452609652409654288939453864662574492755638196441031697983306185201937938494005715633372054806854057586799967012137223947582142630658513221740883238294728761739364746783743196000159218880734785761725221186749042497736692920731109636972160893370866115673458533483329525467585164471075784860246360083444
Integer Square Root of 2, (actually 2 * 10 ^ 4008, nth root method):
1414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641572735013846230912297024924836055850737212644121497099935831413222665927505592755799950501152782060571470109559971605970274534596862014728517418640889198609552329230484308714321450839762603627995251407989687253396546331808829640620615258352395054745750287759961729835575220337531857011354374603408498847160386899970699004815030544027790316454247823068492936918621580578463111596668713013015618568987237235288509264861249497715421833420428568606014682472077143585487415565706967765372022648544701585880162075847492265722600208558446652145839889394437092659180031138824646815708263010059485870400318648034219489727829064104507263688131373985525611732204024509122770022694112757362728049573810896750401836986836845072579936472906076299694138047565482372899718032680247442062926912485905218100445984215059112024944134172853147810580360337107730918286931471017111168391658172688941975871658215212822951848847208969463386289156288276595263514054226765323969461751129160240871551013515045538128756005263146801712740265396947024030051749531886292563138518816347800156936917688185237868405228783762938921430065586956868596459515550164472450983689603688732311438941557665104088391429233811320605243362948531704991577175622854974143899918802176243096520656421182731672625753959471725593463723863226148274262220867115583959992652117625269891754098815934864008345708518147223181420407042650905653233339843645786579679651926729239987536661721598257886026336361782749599421940377775368142621773879919455139723127406689832998989538672882285637869774966251996658352577619893932284534473569479496295216889148549253890475582883452609652409654288939453864662574492755638196441031697983306185201937938494005715633372054806854057586799967012137223947582142630658513221740883238294728761739364746783743196000159218880734785761725221186749042497736692920731109636972160893370866115673458533483329525467585164471075784860246360083445
Integer Cube Root of 2, (actually 2 * 10 ^ 4008):
12599210498948731647672106072782283505702514647015079800819751121552996765139594837293965624362550941543102560356156652593990240406137372284591103042693552469606426166250009774745265654803068671854055186892458725167641993737096950983827831613991551293136953661839474634485765703031190958959847411059811629070535908164780114735213254847712978802422085820532579725266622026690056656081994715628176405060664826773572670419486207621442965694205079319172441480920448232840127470321964282081201905714188996459998317503801888689594202055922021154729973848802607363697417887792157984675099539630078260959624203483238660139857363433909737126527995991969968377913168168154428850279651529278107679714002040605674803938561251718357006907984996341976291474044834540269715476228513178020643878047649322579052898467085805286258130005429388560720609747223040631357234936458406575916916916727060124402896700001069081035313852902700415084232336239889386496782194149838027072957176812879001445746227147702348357151905506722084818485009287239209282646606717174247753709737030012742918094054425696592075036357570375189603707473993461014490145157635960471111973845299132965726258904860978856180138677383615773009865983660805975756012787121486856242684556411651558179353228015896291299445004012084254141601575258416298814230973582153060405772425383645325335660
Integer 7th Root of 2, (actually 2 * 10 ^ 4004):
110408951367381233764950538762334472132532660078012416551453246414210632288038098071659828988630200514689715906557993125396921468043085579651064805838808196163919864392215583814551234397476339507890664685902921180613942144056283519219500774011043913929222338953790376732070503206390380988494445707084527925240582730725486467967183681658942999591682242459036160190261150569028438652686935172086652456800484770182207006433466758082204482396098451455092224240860882545144206285044829838431779372151867676523068340672781132725205233485925077681104722131036524174667129439905032
```

## zkl

{{trans|Python}}
Uses GNU GMP library

```zkl
var [const] BN=Import("zklBigNum");
fcn root(n,r){
f:='wrap(z){ (n/z.pow(r-1) + z*(r-1))/r or 1 };  //--> v or 1
c,d,e:=1,f(c),f(d);
while(c!=d and c!=e){ c,d,e=d,e,f(e) }
if(d

```