⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

## M2000 Interpreter

```
Module RationalNumbers {
Class Rational {
numerator as decimal, denominator as decimal
gcd=lambda->0
lcm=lambda->0
operator "+" {
denom=.lcm(l.denominator, .denominator)
.numerator<=denom/l.denominator*l.numerator+denom/.denominator*.numerator
if .numerator==0 then denom=1
.denominator<=denom
}
Operator Unary {
.numerator-!
}
Operator "-" {
Call Operator "+", -l
}
Operator "*" {
g1=.gcd(l.numerator,.denominator)
g2=.gcd(.numerator, l.denominator)
Push l.numerator/g1*.numerator/g2
Push l.denominator/g2*.denominator/g1

}
Function Inverse {
if .numerator==0 then Error "Division by zero"
ret=This
sign=sgn(ret.numerator) : if sign<0 then ret.numerator-!
swap ret.numerator, ret.denominator
if sign<0 then ret.numerator-!
=ret
}
Operator "/" {
call operator "*", l.inverse()
}
Function Power {
ret=This
ret.numerator<=.numerator^pow
ret.denominator<=.denominator^pow
=ret
}
Operator "=" {
Def boolean T=True, F=False
if Abs(sgn(l.numerator))+Abs(sgn(.numerator))=0 then Push T: exit
if sgn(l.numerator) <>sgn(.numerator) then Push F : exit
pcomp=l/this
PUSH pcomp.numerator=1 and pcomp.denominator=1
}
Operator ">" {
Def boolean F
if Abs(sgn(l.numerator))+Abs(sgn(.numerator))=0 then Push F: exit
if sgn(l.numerator)=0 then {
PUSH .numerator>0
} Else {
pcomp=this/l
PUSH pcomp.real>1
}
}
Operator ">=" {
if sgn(l.numerator)=0 then {
PUSH .numerator>=0
} Else {
pcomp=this/l
PUSH pcomp.real>=1
}
}
Operator "<" {
Def boolean F
if Abs(sgn(l.numerator))+Abs(sgn(.numerator))=0 then Push F: exit
if sgn(l.numerator)=0 then {
PUSH .numerator<0
} Else {
pcomp=this/l
PUSH pcomp.real<1
}
}
Operator "<=" {
if sgn(l.numerator)=0 then {
PUSH .numerator<=0
} Else {
pcomp=this/l
PUSH pcomp.real<=1
}
}
Operator "<>" {
if sgn(l.numerator)=0 then {
PUSH .numerator<>0
} Else {
pcomp=this/l
PUSH pcomp.real<>1
}
}
Group Real {
value {
link parent numerator, denominator to n, d
=n/d
}
}
Group ToString\$ {
value {
link parent numerator, denominator to n, d
=Str\$(n)+"/"+Str\$(d,"")
}
}
class:
Module Rational (.numerator, .denominator) {
if .denominator<=0 then Error "Positive only denominator"
gcd1=lambda (a as decimal, b as decimal) -> {
if a<b then swap a,b
g=a mod b
while g {
a=b:b=g: g=a mod b
}
=abs(b)
}
.gcd<=gcd1
.lcm<=lambda gcd=gcd1 (a as decimal, b as decimal) -> {
=a/gcd(a,b)*b
}
}
}
Print rational(-3,3)<>rational(-3,3)
M=Rational(10, 150)
N=Rational(2, 4)
Z=M+N
Print Z.numerator, Z.denominator
Print 10/150@+2/4@
Print Z.real
Z=-M+N
Print Z.numerator, Z.denominator
Print -10/150@+2/4@
Print Z.real
Z=M-N
Print Z.numerator, Z.denominator
Print 10/150@-2/4@
Print Z.real
Z=M*N
Print Z.numerator, Z.denominator
Print (10/150@)*(2/4@)
Print Z.real
Z=M/N
Print Z.numerator, Z.denominator
Print (10/150@)/(2/4@)
Print Z.real
Z=Z.Power(2)
Print Z.real
Print Z=Z
Print Z=N
Print Z=-Z
ZZ=-Z
Print ZZ=ZZ
Print -Z=-Z
Print Z.numerator, Z.denominator
Print Z.real, Z.tostring\$
\\ Array of rational numbers
Dim K(100)=rational(1,1)
M=K(4)+K(3)
Print M.real
Print K(4).toString\$
}
RationalNumbers

```