⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

{{task|Games}} [[Category:Recursion]] [[Category:Puzzles]]

For a maze generated by [[Maze generation|this task]], write a function that finds (and displays) the shortest path between two cells. Note that because these mazes are generated by the [[wp:Maze_generation_algorithm#Depth-first_search|Depth-first search]] algorithm, they contain no circular paths, and a simple depth-first tree search can be used.

Ada

The maze is read from the standard input. The size of the maze is hardwired into the program (see the constants X_Size and Y_Size).

with Ada.Text_IO;

procedure Maze_Solver is

   X_Size: constant Natural := 45;
   Y_Size: constant Natural := 17;

   subtype X_Range is Natural range 1 .. X_Size;
   subtype Y_Range is Natural range 1 .. Y_Size;

   East:  constant X_Range := 2;
   South: constant Y_Range := 1;

   X_Start: constant X_Range  := 3; -- start at the upper left
   Y_Start: constant Y_Range  := 1;
   X_Finish: constant X_Range := X_Size-East; -- go to the lower right
   Y_Finish: constant Y_Range := Y_Size; 

   type Maze_Type is array (Y_Range) of String(X_Range);

   function Solved(X: X_Range; Y: Y_Range) return Boolean is
   begin
      return (X = X_Finish) and (Y = Y_Finish);
   end Solved;

   procedure Output_Maze(M: Maze_Type; Message: String := "") is
   begin
      if Message /= "" then
         Ada.Text_IO.Put_Line(Message);
      end if;
      for I in M'Range loop
         Ada.Text_IO.Put_Line(M(I));
      end loop;
   end Output_Maze;

   procedure Search(M: in out Maze_Type; X: X_Range; Y:Y_Range) is
   begin
      M(Y)(X) := '*';
      if Solved(X, Y) then
         Output_Maze(M, "Solution found!");
      else
         if Integer(Y)-South >= 1 and then M(Y-South)(X) = ' ' then
            Search(M, X, Y-South);
         end if;
         if Integer(Y)+South <= Y_Size and then M(Y+South)(X) = ' ' then
            Search(M, X, Y+South);
         end if;
         if Integer(X)-East >= 1 and then M(Y)(X-East) = ' ' then
            Search(M, X-East, Y);
         end if;
         if Integer(Y)+East <= Y_Size and then M(Y)(X+East) = ' ' then
            Search(M, X+East, Y);
         end if;
      end if;
      M(Y)(X) := ' ';
   end Search;

   Maze: Maze_Type;
   X: X_Range := X_Start;
   Y: Y_Range := Y_Start;

begin
   for I in 1 .. Y_Size loop
      Maze(I) := Ada.Text_IO.Get_Line;
   end loop;
   Maze(Y_Start)(X_Start)   := ' '; -- Start from
   Maze(Y_Finish)(X_Finish) := ' '; -- Go_To
   Output_Maze(Maze, "The Maze:");
   Ada.Text_IO.New_Line;

   Search(Maze, X, Y) ; -- Will output *all* Solutions.
                        -- If there is no output, there is no solution.
end Maze_Solver;

{{out|Example output:}} (using a maze generated by the Ada implementation of the maze generation task as the input):

> ./maze_solver < maze.txt 
The Maze:
+- -+---+---+---+---+---+---+---+---+---+---+
|                                       |   |
+   +   +---+---+---+---+---+---+---+   +   +
|   |           |       |               |   |
+   +---+---+   +---+   +   +---+---+---+   +
|   |           |       |   |   |           |
+---+   +---+---+   +---+   +   +   +---+   +
|       |           |       |   |   |       |
+   +---+   +---+---+   +---+   +   +   +---+
|       |   |           |           |       |
+---+---+   +   +---+---+---+---+   +---+   +
|           |       |           |       |   |
+   +   +---+---+   +---+   +   +---+---+   +
|   |           |           |               |
+   +---+   +---+---+---+---+---+---+---+   +
|       |                                   |
+---+---+---+---+---+---+---+---+---+---+- -+

Solution found!
+-*-+---+---+---+---+---+---+---+---+---+---+
| * * * * * * * * * * * * * * * * * * * |   |
+   +   +---+---+---+---+---+---+---+ * +   +
|   |           |       | * * * * * * * |   |
+   +---+---+   +---+   + * +---+---+---+   +
|   |           |       | * |   |           |
+---+   +---+---+   +---+ * +   +   +---+   +
|       |           | * * * |   |   |       |
+   +---+   +---+---+ * +---+   +   +   +---+
|       |   | * * * * * |           |       |
+---+---+   + * +---+---+---+---+   +---+   +
|           | * * * |     * * * |       |   |
+   +   +---+---+ * +---+ * + * +---+---+   +
|   |           | * * * * * | * * * * * * * |
+   +---+   +---+---+---+---+---+---+---+ * +
|       |                                 * |
+---+---+---+---+---+---+---+---+---+---+-*-+

AutoHotkey

Generator and solver combined.

Width := 10, Height	:= 10												; set grid size
SleepTime := 0

gosub, Startup

Gui, +AlwaysOnTop
Gui, font, s12, consolas
Gui, add, edit, vEditGrid x10, % maze
Gui, add, button, xs gStartup Default, Generate maze
Gui, add, button, x+10 gSolve, Solve 
Gui, show,, maze
GuiControl,, EditGrid, % maze											; show maze
return

;-----------------------------------------------------------------------
^Esc::
GuiEscape:
GuiClose:
ExitApp
return

;-----------------------------------------------------------------------
Startup:
oMaze := []																; initialize 
Solved := false
loop, % Height
{
	row := A_Index
	loop, % Width														; create oMaze[row,column] borders 
		col := A_Index, oMaze[row,col] :=  "LRTB"						; i.e. oMaze[2,5] := LRTB (add all borders)
}
Random, row, 1, % Height												; random row
Random, col, 1, % Width													; random col
grid := maze2text(oMaze)												; object to text
GuiControl,, EditGrid, % Grid											; show Grid
row := col := 1															; reset to 1,1
oMaze := Generate_maze(row, col, oMaze)									; generate maze starting from random row/column
oMaze[1,1] .= "X"														; start from 1,1
maze := maze2text(oMaze)												; object to text
GuiControl,, EditGrid, % maze											; show maze
GuiControl,, EditRoute													; clear route
GuiControl, Enable, Solve
return

;-----------------------------------------------------------------------
Solve:
GuiControl, Disable, Generate maze
GuiControl, Disable, Solve
loop % oRoute.MaxIndex()
	oRoute.pop()

oSolution	:= Solve(1, 1, oMaze)										; solve starting from 1,1
oMaze 		:= oSolution.1
oRoute 		:= oSolution.2
Update(oMaze, oRoute)
Solved := true
GuiControl, Enable, Generate maze
return

;-----------------------------------------------------------------------
Update(oMaze, oRoute){
	global SleepTime
	GuiControl,, EditGrid, % maze2text(oMaze)
	Sleep, % SleepTime
}

;-----------------------------------------------------------------------
maze2text(oMaze){
	width := oMaze.1.MaxIndex()
	BLK := "█"
	for row, objRow in oMaze
	{
		for col, val in objRow											; add ceiling
		{
			ceiling := InStr(oMaze[row, col] , "x") && InStr(oMaze[row-1, col] , "x") ? "+ " BLK " " : "+   "
			grid .= (InStr(val, "T") ? "+---" : ceiling) (col = Width ? "+`n" : "")
		}
		for col, val in objRow											; add left wall
		{
			wall := SubStr(val, 0) = "X" ? BLK : " "
			grid .= (InStr(val, "L") ? "| " : "  ") wall " " (col = Width ? "|`n" : "") ; add left wall if needed then outer right border
		}
	}
	Loop % Width
		Grid .= "+---"													; add bottom floor
	Grid .= "+"															; add right bottom corner
	return RegExReplace(grid , BLK "   (?=" BLK ")" ,  BLK BLK BLK BLK)	; fill gaps
}

;-----------------------------------------------------------------------
Generate_maze(row, col, oMaze) {
	neighbors := row+1 "," col "`n" row-1 "," col  "`n" row "," col+1  "`n" row "," col-1
	Sort, neighbors, random												; randomize neighbors list
	Loop, parse, neighbors, `n											; for each neighbor
	{
		rowX := StrSplit(A_LoopField, ",").1							; this neighbor row
		colX := StrSplit(A_LoopField, ",").2							; this neighbor column
		if !instr(oMaze[rowX,colX], "LRTB") || !oMaze[rowX, colX]		; if visited (has a missing border) or out of bounds
			continue													; skip
		
		; remove borders
		if (row > rowX)													; Cell is below this neighbor
			oMaze[row,col] := StrReplace(oMaze[row,col], "T") , oMaze[rowX,colX] := StrReplace(oMaze[rowX,colX], "B")
		else if (row < rowX)											; Cell is above this neighbor
			oMaze[row,col] := StrReplace(oMaze[row,col], "B") , oMaze[rowX,colX] := StrReplace(oMaze[rowX,colX], "T")
		else if (col > colX)											; Cell is right of this neighbor
			oMaze[row,col] := StrReplace(oMaze[row,col], "L") , oMaze[rowX,colX] := StrReplace(oMaze[rowX,colX], "R")
		else if (col < colX)											; Cell is left of this neighbor
			oMaze[row,col] := StrReplace(oMaze[row,col], "R") , oMaze[rowX,colX] := StrReplace(oMaze[rowX,colX], "L")
		
		Generate_maze(rowX, colX, oMaze)								; recurse for this neighbor
	}
	return, oMaze
}

;-----------------------------------------------------------------------
Solve(row, col, oMaze){
	static oRoute := []
	oNeighbor := [], targetrow := oMaze.MaxIndex(), targetCol := oMaze.1.MaxIndex()
	
	;~ Update(oMaze, oRoute)
	oRoute.push(row ":" col)											; push current cell address to oRoute
	oMaze[row, col] .= "X"												; mark it visited "X"
		
	if (row = targetrow) && (Col = targetCol)							; if solved
		return true														; return ture

	; create list of Neighbors
	oNeighbor[row, col] := []
	if !InStr(oMaze[row, col], "R")										; if no Right border
		oNeighbor[row, col].push(row "," col+1)							; add neighbor
	if !InStr(oMaze[row, col], "B")										; if no Bottom border
		oNeighbor[row, col].push(row+1 "," col)							; add neighbor
	if !InStr(oMaze[row, col], "T")										; if no Top border
		oNeighbor[row, col].push(row-1 "," col)							; add neighbor
	if !InStr(oMaze[row, col], "L")										; if no Left border
		oNeighbor[row, col].push(row "," col-1)							; add neighbor
	
	; recurese for each oNeighbor
	for each, neighbor in oNeighbor[row, col]							; for each neighbor 
	{
		Update(oMaze, oRoute)
		startrow := StrSplit(neighbor, ",").1							; this neighbor
		startCol := StrSplit(neighbor, ",").2							; becomes starting point		
		
		if !InStr(oMaze[startrow, startCol], "X")						; if it was not visited
			if Solve(startrow, startCol, oMaze)							; recurse for current neighbor
				return [oMaze, oRoute]									; return solution if solved
	}
	oRoute.pop()														; no solution found, back track
	oMaze[row, Col] := StrReplace(oMaze[row, Col], "X")					; no solution found, back track
	;~ Update(oMaze, oRoute)
}

;-----------------------------------------------------------------------
#IfWinActive, maze
Right::
Left::
Up::
Down::
if Solved
	return

if (A_ThisHotkey="Right") && (!InStr(oMaze[row,col], "R"))
	oMaze[row, col] := StrReplace(oMaze[row, col], "X")		, col++
if (A_ThisHotkey="Left") && (!InStr(oMaze[row,col], "L"))
	oMaze[row, col] := StrReplace(oMaze[row, col], "X")		, col--
if (A_ThisHotkey="Up") && (!InStr(oMaze[row,col], "T"))
	oMaze[row, col] := StrReplace(oMaze[row, col], "X")		, row--
if (A_ThisHotkey="Down") && (!InStr(oMaze[row,col], "B"))
	oMaze[row, col] := StrReplace(oMaze[row, col], "X")		, row++

oMaze[row, col] .= "X"
GuiControl,, EditGrid, % maze2text(oMaze)

if (col = Width) && (row = Height)
{
	Solved := true
	oMaze[height, width] := StrReplace(oMaze[height, width], "X")
	SleepTime := 0
	gosub, solve
	return
}
return
#IfWinActive

Outputs:

+---+---+---+---+---+---+---+---+---+---+ 
| ¦¦¦¦¦ |     ¦¦¦¦¦ |     ¦¦¦¦¦¦¦¦¦¦¦¦¦ |
+---+ ¦ +---+ ¦ + ¦ +---+ ¦ +---+---+ ¦ +
|   | ¦ | ¦¦¦¦¦ | ¦¦¦¦¦¦¦¦¦ | ¦¦¦¦¦ | ¦ |
+   + ¦ + ¦ +---+---+---+---+ ¦ + ¦ + ¦ +
| ¦¦¦¦¦ | ¦ | ¦¦¦¦¦¦¦¦¦¦¦¦¦ | ¦ | ¦¦¦¦¦ |
+ ¦ +---+ ¦ + ¦ +---+---+ ¦ + ¦ +---+---+
| ¦ |     ¦¦¦¦¦ | ¦¦¦¦¦¦¦¦¦ | ¦¦¦¦¦ |   |
+ ¦ +---+---+---+ ¦ +---+---+---+ ¦ +   +
| ¦¦¦¦¦ | ¦¦¦¦¦¦¦¦¦ |             ¦¦¦¦¦ |
+---+ ¦ + ¦ +---+---+   +---+---+---+ ¦ +
| ¦¦¦¦¦ | ¦¦¦¦¦¦¦¦¦ |   | ¦¦¦¦¦ |   | ¦ |
+ ¦ +---+---+---+ ¦ +---+ ¦ + ¦ +   + ¦ +
| ¦¦¦¦¦ | ¦¦¦¦¦¦¦¦¦ | ¦¦¦¦¦ | ¦ | ¦¦¦¦¦ |
+---+ ¦ + ¦ +---+---+ ¦ +---+ ¦ + ¦ +---+
| ¦¦¦¦¦ | ¦ | ¦¦¦¦¦¦¦¦¦ | ¦¦¦¦¦ | ¦ |   |
+ ¦ +---+ ¦ + ¦ +---+---+ ¦ +---+ ¦ +   +
| ¦ |     ¦¦¦¦¦     | ¦¦¦¦¦ |   | ¦¦¦¦¦ |
+ ¦ +---+---+---+---+ ¦ +---+   +---+ ¦ +
| ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ |             ¦ |
+---+---+---+---+---+---+---+---+---+---+

BBC BASIC

{{works with|BBC BASIC for Windows}} [[Image:mazesolve_bbc.gif|right]] Maze generation code also included.

      MazeWidth% = 11
      MazeHeight% = 9
      MazeCell% = 50
      
      VDU 23,22,MazeWidth%*MazeCell%/2+3;MazeHeight%*MazeCell%/2+3;8,16,16,128
      VDU 23,23,3;0;0;0; : REM Line thickness
      OFF
      PROCgeneratemaze(Maze&(), MazeWidth%, MazeHeight%, MazeCell%)
      PROCsolvemaze(Path{()}, Maze&(), 0, MazeHeight%-1, MazeWidth%-1, 0, MazeCell%)
      END
      
      DEF PROCsolvemaze(RETURN s{()}, m&(), x%, y%, dstx%, dsty%, s%)
      LOCAL h%, i%, n%, p%, q%, w%
      w% = DIM(m&(),1)
      h% = DIM(m&(),2)
      DIM s{(w%*h%) x%,y%}
      GCOL 3,14
      m&(x%,y%) OR= &80
      REPEAT
        FOR i% = 0 TO 3
          CASE i% OF
            WHEN 0: p% = x%-1 : q% = y%
            WHEN 1: p% = x%+1 : q% = y%
            WHEN 2: p% = x% : q% = y%-1
            WHEN 3: p% = x% : q% = y%+1
          ENDCASE
          IF p% >= 0 IF p% < w% IF q% >= 0 IF q% < h% IF m&(p%,q%) < &80 THEN
            IF p% > x% IF m&(p%,q%) AND 1 EXIT FOR
            IF q% > y% IF m&(p%,q%) AND 2 EXIT FOR
            IF x% > p% IF m&(x%,y%) AND 1 EXIT FOR
            IF y% > q% IF m&(x%,y%) AND 2 EXIT FOR
          ENDIF
        NEXT
        IF i% < 4 THEN
          m&(p%,q%) OR= &80
          s{(n%)}.x% = x%
          s{(n%)}.y% = y%
          n% += 1
        ELSE
          IF n% > 0 THEN
            n% -= 1
            p% = s{(n%)}.x%
            q% = s{(n%)}.y%
          ENDIF
        ENDIF
        LINE (x%+0.5)*s%,(y%+0.5)*s%,(p%+0.5)*s%,(q%+0.5)*s%
        x% = p%
        y% = q%
      UNTIL x%=dstx% AND y%=dsty%
      s{(n%)}.x% = x%
      s{(n%)}.y% = y%
      ENDPROC
      
      DEF PROCgeneratemaze(RETURN m&(), w%, h%, s%)
      LOCAL x%, y%
      DIM m&(w%, h%)
      FOR y% = 0 TO h%
        LINE 0,y%*s%,w%*s%,y%*s%
      NEXT
      FOR x% = 0 TO w%
        LINE x%*s%,0,x%*s%,h%*s%
      NEXT
      GCOL 15
      PROCcell(m&(), RND(w%)-1, y% = RND(h%)-1, w%, h%, s%)
      ENDPROC
      
      DEF PROCcell(m&(), x%, y%, w%, h%, s%)
      LOCAL i%, p%, q%, r%
      m&(x%,y%) OR= &40 : REM Mark visited
      r% = RND(4)
      FOR i% = r% TO r%+3
        CASE i% MOD 4 OF
          WHEN 0: p% = x%-1 : q% = y%
          WHEN 1: p% = x%+1 : q% = y%
          WHEN 2: p% = x% : q% = y%-1
          WHEN 3: p% = x% : q% = y%+1
        ENDCASE
        IF p% >= 0 IF p% < w% IF q% >= 0 IF q% < h% IF m&(p%,q%) < &40 THEN
          IF p% > x% m&(p%,q%) OR= 1 : LINE p%*s%,y%*s%+4,p%*s%,(y%+1)*s%-4
          IF q% > y% m&(p%,q%) OR= 2 : LINE x%*s%+4,q%*s%,(x%+1)*s%-4,q%*s%
          IF x% > p% m&(x%,y%) OR= 1 : LINE x%*s%,y%*s%+4,x%*s%,(y%+1)*s%-4
          IF y% > q% m&(x%,y%) OR= 2 : LINE x%*s%+4,y%*s%,(x%+1)*s%-4,y%*s%
          PROCcell(m&(), p%, q%, w%, h%, s%)
        ENDIF
      NEXT
      ENDPROC

C

See [[Maze_generation#C|Maze generation]] for combined gen/solve code.

C++

Generator and solver combined. The generator is the same found in [[Maze_generation#C++|Maze generation]]

[[File:maze_solving_cpp.png|300px]]


#include <windows.h>
#include <iostream>
#include <string>

//--------------------------------------------------------------------------------------------------
using namespace std;

//--------------------------------------------------------------------------------------------------
const int BMP_SIZE = 512, CELL_SIZE = 8;

//--------------------------------------------------------------------------------------------------
enum directions { NONE, NOR = 1, EAS = 2, SOU = 4, WES = 8 };

//--------------------------------------------------------------------------------------------------
class myBitmap
{
public:
    myBitmap() : pen( NULL ) {}
    ~myBitmap()
    {
	DeleteObject( pen );
	DeleteDC( hdc );
	DeleteObject( bmp );
    }

    bool create( int w, int h )
    {
	BITMAPINFO	bi;
	ZeroMemory( &bi, sizeof( bi ) );
	bi.bmiHeader.biSize	   = sizeof( bi.bmiHeader );
	bi.bmiHeader.biBitCount	   = sizeof( DWORD ) * 8;
	bi.bmiHeader.biCompression = BI_RGB;
	bi.bmiHeader.biPlanes	   = 1;
	bi.bmiHeader.biWidth	   =  w;
	bi.bmiHeader.biHeight	   = -h;

	HDC dc = GetDC( GetConsoleWindow() );
	bmp = CreateDIBSection( dc, &bi, DIB_RGB_COLORS, &pBits, NULL, 0 );
	if( !bmp ) return false;

	hdc = CreateCompatibleDC( dc );
	SelectObject( hdc, bmp );
	ReleaseDC( GetConsoleWindow(), dc ); 
	width = w; height = h;

	return true;
    }

    void clear()
    {
	ZeroMemory( pBits, width * height * sizeof( DWORD ) );
    }

    void setPenColor( DWORD clr )
    {
	if( pen ) DeleteObject( pen );
	pen = CreatePen( PS_SOLID, 1, clr );
	SelectObject( hdc, pen );
    }

    void saveBitmap( string path )
    {
	BITMAPFILEHEADER fileheader;
	BITMAPINFO	 infoheader;
	BITMAP		 bitmap;
	DWORD		 wb;

	GetObject( bmp, sizeof( bitmap ), &bitmap );

	DWORD* dwpBits = new DWORD[bitmap.bmWidth * bitmap.bmHeight];
	ZeroMemory( dwpBits, bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD ) );
	ZeroMemory( &infoheader, sizeof( BITMAPINFO ) );
	ZeroMemory( &fileheader, sizeof( BITMAPFILEHEADER ) );

	infoheader.bmiHeader.biBitCount = sizeof( DWORD ) * 8;
	infoheader.bmiHeader.biCompression = BI_RGB;
	infoheader.bmiHeader.biPlanes = 1;
	infoheader.bmiHeader.biSize = sizeof( infoheader.bmiHeader );
	infoheader.bmiHeader.biHeight = bitmap.bmHeight;
	infoheader.bmiHeader.biWidth = bitmap.bmWidth;
	infoheader.bmiHeader.biSizeImage = bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD );

	fileheader.bfType    = 0x4D42;
	fileheader.bfOffBits = sizeof( infoheader.bmiHeader ) + sizeof( BITMAPFILEHEADER );
	fileheader.bfSize    = fileheader.bfOffBits + infoheader.bmiHeader.biSizeImage;

	GetDIBits( hdc, bmp, 0, height, ( LPVOID )dwpBits, &infoheader, DIB_RGB_COLORS );

	HANDLE file = CreateFile( path.c_str(), GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL );
	WriteFile( file, &fileheader, sizeof( BITMAPFILEHEADER ), &wb, NULL );
	WriteFile( file, &infoheader.bmiHeader, sizeof( infoheader.bmiHeader ), &wb, NULL );
	WriteFile( file, dwpBits, bitmap.bmWidth * bitmap.bmHeight * 4, &wb, NULL );
	CloseHandle( file );

	delete [] dwpBits;
    }

    HDC getDC() const     { return hdc; }
    int getWidth() const  { return width; }
    int getHeight() const { return height; }

private:
    HBITMAP bmp;
    HDC	    hdc;
    HPEN    pen;
    void    *pBits;
    int	    width, height;
};
//--------------------------------------------------------------------------------------------------
class mazeGenerator
{
public:
    mazeGenerator()
    {
	_world = 0; 
	_bmp.create( BMP_SIZE, BMP_SIZE ); 
	_bmp.setPenColor( RGB( 0, 255, 0 ) ); 
    }

    ~mazeGenerator() { killArray(); }

    BYTE* getMaze() const { return _world; }

    void create( int side )
    {
	_s = side;
	generate();
    }

private:
    void generate()
    {
	killArray();
	_world = new BYTE[_s * _s];
	ZeroMemory( _world, _s * _s );
	_ptX = rand() % _s; _ptY = rand() % _s;
	carve();
    }

    void carve()
    {
	while( true )
	{
	    int d = getDirection();
	    if( d < NOR ) return;

	    switch( d )
	    {
		case NOR:
		    _world[_ptX + _s * _ptY] |= NOR; _ptY--;
		    _world[_ptX + _s * _ptY] = SOU | SOU << 4;
		break;
		case EAS:
		    _world[_ptX + _s * _ptY] |= EAS; _ptX++;
		    _world[_ptX + _s * _ptY] = WES | WES << 4;
		break;
		case SOU:
		    _world[_ptX + _s * _ptY] |= SOU; _ptY++;
		    _world[_ptX + _s * _ptY] = NOR | NOR << 4;
		break;
		case WES:
		    _world[_ptX + _s * _ptY] |= WES; _ptX--;
		    _world[_ptX + _s * _ptY] = EAS | EAS << 4;
	    }
	}
    }

    int getDirection()
    {
	int d = 1 << rand() % 4;
	while( true )
	{
	    for( int x = 0; x < 4; x++ )
	    {
		if( testDir( d ) ) return d;
		d <<= 1;
		if( d > 8 ) d = 1;
	    }
	    d = ( _world[_ptX + _s * _ptY] & 0xf0 ) >> 4;
	    if( !d ) return -1;
	    switch( d )
	    {
		case NOR: _ptY--; break;
		case EAS: _ptX++; break;
		case SOU: _ptY++; break;
		case WES: _ptX--; break;
	    }

	    d = 1 << rand() % 4;
        }
    }

    bool testDir( int d )
    {
	switch( d )
	{
	    case NOR: return ( _ptY - 1 > -1 && !_world[_ptX + _s * ( _ptY - 1 )] );
	    case EAS: return ( _ptX + 1 < _s && !_world[_ptX + 1 + _s * _ptY] );
	    case SOU: return ( _ptY + 1 < _s && !_world[_ptX + _s * ( _ptY + 1 )] );
	    case WES: return ( _ptX - 1 > -1 && !_world[_ptX - 1 + _s * _ptY] );
	}
	return false;
    }

    void killArray() { if( _world ) delete [] _world; }

    BYTE*    _world;
    int      _s, _ptX, _ptY;
    myBitmap _bmp;
};
//--------------------------------------------------------------------------------------------------
class mazeSolver
{
public:
    mazeSolver()      
    {
	_bmp.create( BMP_SIZE, BMP_SIZE );
	_pts = 0;
    }

    ~mazeSolver() { killPoints(); }

    void solveIt( BYTE* maze, int size, int sX, int sY, int eX, int eY )
    {
	_lastDir = NONE;
	_world = maze; _s = size; _sx = sX; _sy = sY; _ex = eX; _ey = eY;
		
	for( int y = 0; y < _s; y++ )
	    for( int x = 0; x < _s; x++ )
		_world[x + _s * y] &= 0x0f;

        _world[_sx + _s * _sy] |= NOR << 4;

	killPoints();
	_pts = new BYTE[_s * _s];
	ZeroMemory( _pts, _s * _s );
		
	findTheWay();

	_sx = sX; _sy = sY;
	display();
    }

private:
    int invert( int d )
    {
	switch( d )
	{
	    case NOR: return SOU;
	    case SOU: return NOR;
	    case WES: return EAS;
	    case EAS: return WES;
	}
	return NONE;
    }

    void updatePosition( int d )
    {
        switch( d )
	{
	    case NOR: _sy--; break;
	    case EAS: _sx++; break;
	    case SOU: _sy++; break;
	    case WES: _sx--;
	}
    }

    void findTheWay()
    {
	while( true )
	{
	    int d = getDirection();
	    if( d < NOR ) return;
	    _lastDir = invert( d );
	    _world[_sx + _s * _sy] |= d;
	    _pts[_sx + _s * _sy] = d;
	    updatePosition( d );
	    if( _sx == _ex && _sy == _ey ) return;
	    _world[_sx + _s * _sy] |= _lastDir << 4;
	}
    }

    int getDirection()
    {
	int d = 1 << rand() % 4;
	while( true )
	{
	    for( int x = 0; x < 4; x++ )
	    {
		if( testDirection( d ) ) return d;
		d <<= 1;
		if( d > 8 ) d = 1;
	    }

	    d = ( _world[_sx + _s * _sy] & 0xf0 ) >> 4;
	    if( !d ) return -1;
	    _pts[_sx + _s * _sy] = 0;
	    updatePosition( d );
	    _lastDir = invert( d );
	    d = 1 << rand() % 4;
	}
    }

    bool testDirection( int d )
    {
	if( d == _lastDir || !( _world[_sx + _s * _sy] & d ) ) return false;
	switch( d )
	{
	    case NOR: 
		return _sy - 1 > -1 && !( _world[_sx + _s * ( _sy - 1 )] & 0xf0 );
	    case EAS: 
		return _sx + 1 < _s && !( _world[_sx + 1 + _s * _sy] & 0xf0 );
	    case SOU: 
		return _sy + 1 < _s && !( _world[_sx + _s * ( _sy + 1 )] & 0xf0 );
	    case WES: 
		return _sx - 1 > -1 && !( _world[_sx - 1 + _s * _sy] & 0xf0 );
	}
	return false;
    }

    void display()
    {
	_bmp.setPenColor( RGB( 0, 255, 0 ) );
	_bmp.clear();
	HDC dc = _bmp.getDC();
	for( int y = 0; y < _s; y++ )
	{
	    int yy = y * _s;
	    for( int x = 0; x < _s; x++ )
	    {
		BYTE b = _world[x + yy];
		int nx = x * CELL_SIZE, 
		    ny = y * CELL_SIZE;

		if( !( b & NOR ) )
		{
		    MoveToEx( dc, nx, ny, NULL );
		    LineTo( dc, nx + CELL_SIZE + 1, ny );
		}
		if( !( b & EAS ) )
		{
		    MoveToEx( dc, nx + CELL_SIZE, ny, NULL );
		    LineTo( dc, nx + CELL_SIZE, ny + CELL_SIZE + 1 );
		}
		if( !( b & SOU ) )
		{
		    MoveToEx( dc, nx, ny + CELL_SIZE, NULL );
		    LineTo( dc, nx + CELL_SIZE + 1, ny + CELL_SIZE );
		}
		if( !( b & WES ) )
		{
		    MoveToEx( dc, nx, ny, NULL );
		    LineTo( dc, nx, ny + CELL_SIZE + 1 );
		}
	    }
	}

	drawEndPoints( dc );
	_bmp.setPenColor( RGB( 255, 0, 0 ) );

	for( int y = 0; y < _s; y++ )
	{
	    int yy = y * _s;
	    for( int x = 0; x < _s; x++ )
	    {
		BYTE d = _pts[x + yy];
		if( !d ) continue;

		int nx = x * CELL_SIZE + 4, 
		    ny = y * CELL_SIZE + 4;

		MoveToEx( dc, nx, ny, NULL );
		switch( d )
		{
		    case NOR: LineTo( dc, nx, ny - CELL_SIZE - 1 ); break;
		    case EAS: LineTo( dc, nx + CELL_SIZE + 1, ny ); break;
		    case SOU: LineTo( dc, nx, ny + CELL_SIZE + 1 ); break;
		    case WES: LineTo( dc, nx - CELL_SIZE - 1, ny ); break;
		}
	    }
	}

	_bmp.saveBitmap( "f:\\rc\\maze_s.bmp" );
	BitBlt( GetDC( GetConsoleWindow() ), 10, 60, BMP_SIZE, BMP_SIZE, _bmp.getDC(), 0, 0, SRCCOPY );
    }

    void drawEndPoints( HDC dc )
    {
	RECT rc;
	int x = 1 + _sx * CELL_SIZE, y = 1 + _sy * CELL_SIZE;
	SetRect( &rc, x, y, x + CELL_SIZE - 1, y + CELL_SIZE - 1 );
	FillRect( dc, &rc, ( HBRUSH )GetStockObject( WHITE_BRUSH ) );
	x = 1 + _ex * CELL_SIZE, y = 1 + _ey * CELL_SIZE;
	SetRect( &rc, x, y, x + CELL_SIZE - 1, y + CELL_SIZE - 1 );
	FillRect( dc, &rc, ( HBRUSH )GetStockObject( WHITE_BRUSH ) );
    }

    void killPoints() { if( _pts ) delete [] _pts; }

    BYTE*    _world, *_pts;
    int      _s, _sx, _sy, _ex, _ey, _lastDir;
    myBitmap _bmp;
};
//--------------------------------------------------------------------------------------------------
int main( int argc, char* argv[] )
{
    ShowWindow( GetConsoleWindow(), SW_MAXIMIZE );
    srand( GetTickCount() );

    mazeGenerator mg;
    mazeSolver ms;
    int s;
    while( true )
    {
	cout << "Enter the maze size, an odd number bigger than 2 ( 0 to QUIT ): "; cin >> s;
	if( !s ) return 0;
	if( !( s & 1 ) ) s++;
	if( s >= 3 ) 
	{
	    mg.create( s );
	    int sx, sy, ex, ey;
	    while( true )
	    {
		sx = rand() % s; sy = rand() % s;
		ex = rand() % s; ey = rand() % s;
		if( ex != sx || ey != sy ) break;
	    }
	    ms.solveIt( mg.getMaze(), s, sx, sy, ex, ey );
	    cout << endl;
	}
	system( "pause" );
	system( "cls" );
    }
    return 0;
}
//--------------------------------------------------------------------------------------------------

Clojure

(ns small-projects.find-shortest-way
  (:require [clojure.string :as str]))

;Misk functions
(defn cell-empty? [maze coords]
  (= :empty (get-in maze coords)))

(defn wall? [maze coords]
  (= :wall (get-in maze coords)))

(defn track? [maze coords]
  (= :track (get-in maze coords)))

(defn get-neighbours [maze [y x cell]]
  [[y (dec x)] [(inc y) x] [y (inc x)] [(dec y) x]])

(defn get-difference [coll1 filter-coll]
  (filter #(not (contains? filter-coll %)) coll1))

(defn get-empties [maze cell]
      (->> (get-neighbours maze cell)
           (filter (partial cell-empty? maze))))

(defn possible-ways [maze cell filter-coll]
  (-> (get-empties maze cell)
      (get-difference filter-coll)))

(defn replace-cells [maze coords v]
  (if (empty? coords)
    maze
    (recur (assoc-in maze (first coords) v) (rest coords) v)))

;Print and parse functions
(def cell-code->str
  ["  " "  " "  " "  " "· " "╵ " "╴ " "┘ "
   "  " "  " "  " "  " "╶─" "└─" "──" "┴─"
   "  " "  " "  " "  " "╷ " "│ " "┐ " "┤ "
   "  " "  " "  " "  " "┌─" "├─" "┬─" "┼─"
   "  " "  " "  " "  " "■ " "╹ " "╸ " "┛ "
   "  " "  " "  " "  " "╺━" "┗━" "━━" "┻━"
   "  " "  " "  " "  " "╻ " "┃ " "┓ " "┫ "
   "  " "  " "  " "  " "┏━" "┣━" "┳━" "╋━"
   "  "])

(defn get-cell-code [maze coords]
  (let [mode (if (track? maze coords) 1 0)
        check (if (zero? mode) wall? track?)]
    (transduce
      (comp
        (map (partial check maze))
        (keep-indexed (fn [idx test] (when test idx)))
        (map (partial bit-shift-left 1)))
      (completing bit-or)
      (bit-shift-left mode 5)
      (sort (conj (get-neighbours maze coords) coords)))))

(defn code->str [cell-code]
  (nth cell-code->str cell-code))

(defn maze->str-symbols [maze]
  (for [y (range (count maze))]
    (for [x (range (count (nth maze y)))]
      (code->str (get-cell-code maze [y x])))))

(defn maze->str [maze]
  (->> (maze->str-symbols maze)
       (map str/join)
       (str/join "\n")))

(defn parse-pretty-maze [maze-str]
  (->> (str/split-lines maze-str)
       (map (partial take-nth 2))
       (map (partial map #(if (= \space %) :empty :wall)))
       (map vec)
       (vec)))

;Core
(defn find-new-border [maze border old-border]
 (apply conj (map (fn [cell]
                    (zipmap (possible-ways maze cell (conj border old-border))
                            (repeat cell)))
                  (keys border))))

(defn backtrack [visited route]
  (let [cur-cell (get visited (first route))]
    (if (= cur-cell :start)
        route
        (recur visited (conj route cur-cell)))))

(defn breadth-first-search [maze start-cell end-cell]
    (loop [visited {start-cell :start}
           border {start-cell :start}
           old-border {start-cell :start}]
     (if (contains? old-border end-cell)
         (backtrack visited (list end-cell))
         (recur
           (conj visited border)
           (find-new-border maze border old-border)
           border))))

(def maze (parse-pretty-maze maze-str))

(def solved-maze
  (replace-cells maze (breadth-first-search maze [1 1] [19 19]) :track))

(println (maze->str solved-maze))

{{in}}

┌───────────┬───────┬───────┬───────────┐ 
│           │       │       │           │ 
│   ╶───────┘   ╷   ╵   ╷   ╵   ┌───╴   │ 
│               │       │       │       │ 
│   ╶───────┬───┴───┬───┴───┬───┘   ╷   │ 
│           │       │       │       │   │ 
├───────╴   │   ╷   ╵   ╷   │   ┌───┘   │ 
│           │   │       │   │   │       │ 
│   ┌───┬───┘   ├───────┤   │   ├───────┤ 
│   │   │       │       │   │   │       │ 
│   ╵   ╵   ╶───┴───┐   │   │   ╵   ╷   │ 
│                   │   │   │       │   │ 
├───────────────┐   ╵   │   │   ╶───┤   │ 
│               │       │   │       │   │ 
│   ╶───┐   ┌───┴───╴   │   │   ┌───┘   │ 
│       │   │           │   │   │       │ 
├───╴   │   │   ╶───┬───┤   └───┤   ╶───┤ 
│       │   │       │   │       │       │ 
│   ╶───┤   └───╴   ╵   └───┐   └───╴   │ 
│       │                   │           │ 
└───────┴───────────────────┴───────────┘  

{{out}}

┌───────────┬───────┬───────┬───────────┐ 
│ ╻         │       │       │           │ 
│ ┃ ╶───────┘   ╷   ╵   ╷   ╵   ┌───╴   │ 
│ ┃             │       │       │       │ 
│ ┃ ╶───────┬───┴───┬───┴───┬───┘   ╷   │ 
│ ┗━━━━━━━┓ │ ┏━━━┓ │ ┏━━━┓ │       │   │ 
├───────╴ ┃ │ ┃ ╷ ┃ ╵ ┃ ╷ ┃ │   ┌───┘   │ 
│ ┏━━━━━━━┛ │ ┃ │ ┗━━━┛ │ ┃ │   │       │ 
│ ┃ ┌───┬───┘ ┃ ├───────┤ ┃ │   ├───────┤ 
│ ┃ │   │ ┏━━━┛ │       │ ┃ │   │       │ 
│ ┃ ╵   ╵ ┃ ╶───┴───┐   │ ┃ │   ╵   ╷   │ 
│ ┗━━━━━━━┛         │   │ ┃ │       │   │ 
├───────────────┐   ╵   │ ┃ │   ╶───┤   │ 
│               │       │ ┃ │       │   │ 
│   ╶───┐   ┌───┴───╴   │ ┃ │   ┌───┘   │ 
│       │   │           │ ┃ │   │       │ 
├───╴   │   │   ╶───┬───┤ ┃ └───┤   ╶───┤ 
│       │   │       │   │ ┗━━━┓ │       │ 
│   ╶───┤   └───╴   ╵   └───┐ ┃ └───╴   │ 
│       │                   │ ┗━━━━━━━╸ │ 
└───────┴───────────────────┴───────────┘ 

D

{{incorrect|D|Is output double spaced, with only two dots above the E rather than 4, see comment [[User:Petelomax|Pete Lomax]] ([[User talk:Petelomax|talk]]) 06:09, 19 March 2017 (UTC)}} This entry reads a maze generated by http://rosettacode.org/wiki/Maze_generation#D and chooses two random start-end points.

import std.stdio, std.random, std.string, std.array, std.algorithm,
       std.file, std.conv;

enum int cx = 4, cy = 2; // Cell size x and y.
enum int cx2 = cx / 2, cy2 = cy / 2;
enum pathSymbol = '.';
struct V2 { int x, y; }

bool solveMaze(char[][] maze, in V2 s, in V2 end) pure nothrow @safe @nogc {
    if (s == end)
        return true;

    foreach (immutable d; [V2(0, -cy), V2(+cx, 0), V2(0, +cy), V2(-cx, 0)])
        if (maze[s.y + (d.y / 2)][s.x + (d.x / 2)] == ' ' &&
            maze[s.y + d.y][s.x + d.x] == ' ') {
//Would this help?
//          maze[s.y + (d.y / 2)][s.x + (d.x / 2)] = pathSymbol;
            maze[s.y + d.y][s.x + d.x] = pathSymbol;
            if (solveMaze(maze, V2(s.x + d.x, s.y + d.y), end))
                return true;
            maze[s.y + d.y][s.x + d.x] = ' ';
        }

    return false;
}

void main() {
    auto maze = "maze.txt".File.byLine.map!(r => r.chomp.dup).array;
    immutable h = (maze.length.signed - 1) / cy;
    assert (h > 0);
    immutable w = (maze[0].length.signed - 1) / cx;

    immutable start = V2(cx2 + cx * uniform(0, w), cy2 + cy * uniform(0, h));
    immutable end = V2(cx2 + cx * uniform(0, w), cy2 + cy * uniform(0, h));

    maze[start.y][start.x] = pathSymbol;
    if (!solveMaze(maze, start, end))
        return "No solution path found.".writeln;
    maze[start.y][start.x] = 'S';
    maze[end.y][end.x] = 'E';
    writefln("%-(%s\n%)", maze);
}

{{out}}

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |               |           | . . . . . . . . .     |
+   +   +---+---+   +   +---+   + . +---+---+---+ . +   +
|               |           |   | . . . |       | . |   |
+---+---+---+---+---+---+---+   +---+ . +---+   + . +---+
|                   |       |       | . . . . . | E     |
+   +---+---+---+   +   +   +---+   +---+---+ . +---+---+
|       | . . . |   |   |               |   | . . . |   |
+---+   + . + . +   +   +---+---+---+   +   +---+ . +   +
|       | . | . |       | . . . |           | . . . |   |
+   +---+ . + . +---+---+ . + . +---+---+---+ . +---+   +
| . . . . . | . | . . . . . | . . . . . . . | . . . . . |
+ . +---+---+ . + . +---+---+---+---+---+ . +---+---+ . +
| . . . |   | . . . |   |               | .         | . |
+---+ . +   +---+---+   +   +---+   +   + . +---+---+ . +
|   | . . . . . . . |       |       |   | . | . . . . . |
+   +---+---+---+ . +   +---+   +---+   + . + . +---+---+
|   | . . . . . . . |   |       |   |   | . . . |       |
+   + . +---+---+---+---+   +---+   +   +---+---+   +   +
|     . . . . . . S         |                       |   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

EGL

program MazeGenAndSolve

    // First and last columns/rows are "dead" cells. Makes generating
    // a maze with border walls much easier. Therefore, a visible
    // 20x20 maze has a maze size of 22. 	
    mazeSize int = 22;

    south boolean[][];
    west boolean[][];
    visited boolean[][];

    // Solution variables
    solution Dictionary;
    done boolean;
    startingRow, startingCol, endingRow, endingCol int;

    function main()
        initMaze();
        generateMaze();
        drawMaze(false); // Draw maze without solution

        solveMaze();
        drawMaze(true); // Draw maze with solution
    end

    private function initMaze()

        visited = createBooleanArray(mazeSize, mazeSize, false);

        // Initialize border cells as already visited
        for(col int from 1 to mazeSize)
            visited[col][1] = true;
            visited[col][mazeSize] = true;
        end
        for(row int from 1 to mazeSize)
            visited[1][row] = true;
            visited[mazeSize][row] = true;
        end

        // Initialize all walls as present
        south = createBooleanArray(mazeSize, mazeSize, true);
        west = createBooleanArray(mazeSize, mazeSize, true);
    
    end

    private function createBooleanArray(col int in, row int in, initialState boolean in) returns(boolean[][])

        newArray boolean[][] = new boolean[0][0];

        for(i int from 1 to col)
            innerArray boolean[] = new boolean[0];
            for(j int from 1 to row)
                innerArray.appendElement(initialState);
            end
            newArray.appendElement(innerArray);
        end

        return(newArray);

    end

    private function createIntegerArray(col int in, row int in, initialValue int in) returns(int[][])

        newArray int[][] = new int[0][0];

        for(i int from 1 to col)
            innerArray int[] = new int[0];
            for(j int from 1 to row)
                innerArray.appendElement(initialValue);
            end
            newArray.appendElement(innerArray);
        end

        return(newArray);

    end

    private function generate(col int in, row int in)

	    // Mark cell as visited
        visited[col][row] = true;

        // Keep going as long as there is an unvisited neighbor
        while(!visited[col][row + 1] || !visited[col + 1][row] ||
                !visited[col][row - 1] || !visited[col - 1][row])

            while(true)
                r float = MathLib.random(); // Choose a random direction
                
                case
                    when(r < 0.25 && !visited[col][row + 1]) // Go south
                        south[col][row] = false; // South wall down
                        generate(col, row + 1);
                        exit while;
                    when(r >= 0.25 && r < 0.50 && !visited[col + 1][row]) // Go east 
                        west[col + 1][row] = false; // West wall of neighbor to the east down
                        generate(col + 1, row);
                        exit while;
                    when(r >= 0.5 && r < 0.75 && !visited[col][row - 1]) // Go north
                        south[col][row - 1] = false; // South wall of neighbor to the north down
                        generate(col, row - 1);
                        exit while;
                    when(r >= 0.75 && r < 1.00 && !visited[col - 1][row]) // Go west
                        west[col][row] = false; // West wall down
                        generate(col - 1, row);
                        exit while;
                end
            end
        end

    end

    private function generateMaze()

    	// Pick random start position (within the visible maze space)
        randomStartCol int = MathLib.floor((MathLib.random() *(mazeSize - 2)) + 2);
        randomStartRow int = MathLib.floor((MathLib.random() *(mazeSize - 2)) + 2);

        generate(randomStartCol, randomStartRow);

    end

    private function drawMaze(solve boolean in)

        line string;

        // Iterate over wall arrays (skipping dead border cells as required). 
        // Construct a row at a time and output to console.
        for(row int from 1 to mazeSize - 1)

            if(row > 1)
                line = "";
                for(col int from 2 to mazeSize)
                    if(west[col][row])
                        line ::= cellTest(col, row, solve);
                    else
                        line ::= cellTest(col, row, solve);
                    end
                end
                Syslib.writeStdout(line);
            end

            line = "";
            for(col int from 2 to mazeSize - 1)
                if(south[col][row])
                    line ::= "+---";
                else
                    line ::= "+   ";
                end
            end
            line ::= "+";
            SysLib.writeStdout(line);

        end

    end

    private function cellTest(col int in, row int in, solve boolean in) returns(string)

        wall string;

        // Determine cell wall structure. If in solve mode, show start, end and
        // solution markers.
        if(!solve)
            if(west[col][row])
                wall = "|   ";
            else
                wall = "    ";
            end
        else
            if(west[col][row])

                case
                    when(col == startingCol and row == startingRow)
                        wall = "| S ";
                    when(col == endingCol and row == endingRow)
                        wall = "| E ";
                    when(solution.containsKey("x=" + col + "y=" + row))
                        wall = "| * ";
                    otherwise
                        wall = "|   ";
                end

            else
                case
                    when(col == startingCol and row == startingRow)
                        wall = "  S ";
                    when(col == endingCol and row == endingRow)
                        wall = "  E ";
                    when(solution.containsKey("x=" + col + "y=" + row))
                        wall = "  * ";
                    otherwise
                        wall = "    ";
                end
            end
        end

        return(wall);
    end

    private function solve(col int in, row int in)

        if(col == 1 || row == 1 || col == mazeSize || row == mazeSize)
            return;
        end

        if(done || visited[col][row])
            return;
        end

        visited[col][row] = true;

        solution["x=" + col + "y=" + row] = true;

        // Reached the end point
        if(col == endingCol && row == endingRow)
            done = true;
        end

        if(!south[col][row]) // Go South
            solve(col, row + 1);
        end
        if(!west[col + 1][row]) // Go East
            solve(col + 1, row);
        end
        if(!south[col][row - 1]) // Go North
            solve(col, row - 1);
        end
        if(!west[col][row]) // Go West
            solve(col - 1, row);
        end

        if(done)
            return;
        end

        solution.removeElement("x=" + col + "y=" + row);

    end

    private function solveMaze()
        for(col int from 1 to mazeSize)
            for(row int from 1 to mazeSize)
                visited[col][row] = false;
            end
        end

        solution = new Dictionary(false, OrderingKind.byInsertion);
        done = false;

        // Pick random start position on first visible row
        startingCol = MathLib.floor((MathLib.random() *(mazeSize - 2)) + 2);
        startingRow = 2;

        // Pick random end position on last visible row
        endingCol = MathLib.floor((MathLib.random() *(mazeSize - 2)) + 2);
        endingRow = mazeSize - 1;

        solve(startingCol, startingRow);
    end

end

{{out|Output example (for 10x10 maze)}}


+---+---+---+---+---+---+---+---+---+---+
|       |               |       |       |   
+   +---+   +---+---+   +   +   +---+   +
|       |   |       |       |   |   |   |   
+---+   +   +---+   +---+---+   +   +   +
|       |       |       |   |       |   |   
+   +---+---+   +   +   +   +---+---+   +
|   |       |   |   |               |   |   
+   +   +   +   +   +---+---+---+   +   +
|       |       |   |       |       |   |   
+   +---+---+---+   +   +---+   +---+   +
|       |           |   |       |       |   
+---+   +---+   +---+   +   +---+   +   +
|   |   |       |           |       |   |   
+   +   +   +---+   +---+---+---+---+   +
|   |   |   |   |                   |   |   
+   +   +   +   +---+---+---+---+   +   +
|   |   |   |           |       |   |   |   
+   +   +   +   +---+---+   +   +   +   +
|           |               |           |   
+---+---+---+---+---+---+---+---+---+---+

+---+---+---+---+---+---+---+---+---+---+
|       | *   *   S     |       |       |   
+   +---+   +---+---+   +   +   +---+   +
|       | * |       |       |   |   |   |   
+---+   +   +---+   +---+---+   +   +   +
|       | *   * | *   * |   |       |   |   
+   +---+---+   +   +   +   +---+---+   +
|   | *   * | * | * | *   *   *   * |   |   
+   +   +   +   +   +---+---+---+   +   +
| *   * | *   * | * |       | *   * |   |   
+   +---+---+---+   +   +---+   +---+   +
| *   * |     *   * |   | *   * |       |   
+---+   +---+   +---+   +   +---+   +   +
|   | * | *   * | *   *   * |       |   |   
+   +   +   +---+   +---+---+---+---+   +
|   | * | * |   | *   *   *   *   * |   |   
+   +   +   +   +---+---+---+---+   +   +
|   | * | * |           | *   * | * |   |   
+   +   +   +   +---+---+   +   +   +   +
|     *   * |             E | *   *     |   
+---+---+---+---+---+---+---+---+---+---+

Erlang

Using the maze from [[Maze_generation]]. When the path splits each possibility gets its own process that checks if it is the correct one or a dead end. It is intentional that the receive statement in loop_stop/5 only selects successful result.


-module( maze_solving ).

-export( [task/0] ).

cells( {Start_x, Start_y}, {Stop_x, Stop_y}, Maze ) ->
    Start_pid = maze:cell_pid( Start_x, Start_y, Maze ),
    Stop_pid =  maze:cell_pid( Stop_x,  Stop_y, Maze ),
    {ok, Cells} = loop( Start_pid, Stop_pid, maze:cell_accessible_neighbours(Start_pid), [Start_pid] ),
    Cells.

task() ->
    Max_x = 16,
    Max_y = 8,
    Maze = maze:generation( Max_x, Max_y ),
    Start_x = random:uniform( Max_x ),
    Start_y = random:uniform( Max_y ),
    Stop_x = random:uniform( Max_x ),
    Stop_y = random:uniform( Max_y ),
    Cells = cells( {Start_x, Start_y}, {Stop_x, Stop_y}, Maze ),
    [maze:cell_content_set(X, ".") || X <- Cells],
    maze:cell_content_set( maze:cell_pid(Start_x, Start_y, Maze), "S" ),
    maze:cell_content_set( maze:cell_pid(Stop_x, Stop_y, Maze), "G" ),
    maze:display( Maze ),
    maze:stop( Maze ).



loop( _Start, _Stop, [], _Acc) -> {error, dead_end};
loop( _Start, Stop, [Stop], Acc ) -> {ok, lists:reverse( [Stop | Acc] )};
loop( Start, Stop, [Next], [Previous | _T]=Acc ) -> loop( Start, Stop, lists:delete(Previous, maze:cell_accessible_neighbours(Next)), [Next | Acc] );
loop( Start, Stop, Nexts, Acc ) -> loop_stop( lists:member(Stop, Nexts), Start, Stop, Nexts, Acc ).

loop_stop( true, _Start, Stop, _Nexts, Acc ) -> {ok, lists:reverse( [Stop | Acc] )};
loop_stop( false, Start, Stop, Nexts, Acc ) ->
        My_pid = erlang:self(),
        [erlang:spawn( fun() -> My_pid ! loop( Start, Stop, [X], Acc ) end ) || X <- Nexts],
        receive
        {ok, Cells} -> {ok, Cells}
        end.

{{out}}


8> maze_solving:task().
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|     .   .   .   . | .   .   .   . | .   .   .   . |           |
+---+   +---+---+   +   +---+---+   +   +---+---+   +   +---+   +
| .   . |       | .   . |       | .   . |       | .   . |       |
+   +---+   +   +---+---+   +---+---+---+   +   +---+   +---+   +
| . |       |           |                   |       | . |   |   |
+   +---+   +---+---+   +   +   +---+---+   +---+---+   +   +---+
| .   . |   |       |   |   |   |           | .   . | . |       |
+   +   +   +   +   +---+   +   +---+---+---+   +   +   +---+   +
|   | . |       |           |             S   . | .   .     |   |
+---+   +---+---+   +---+---+---+   +---+---+---+   +---+---+   +
| .   . | .   . |       | .   . |   |           |   |           |
+   +   +   +   +---+   +   +   +   +   +---+   +   +   +---+---+
| . |   | . | . |       | . | . |   | G   . |   |   |           |
+   +---+   +   +---+---+   +   +---+---+   +   +---+---+---+   +
| .   .   . | .   .   .   . | .   .   .   . |                   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Emacs Lisp

file: maze.el

(require 'cl-lib)

(cl-defstruct maze rows cols data)

(defmacro maze-pt (w r c)
  `(+ (* (mod ,r (maze-rows ,w)) (maze-cols ,w))
      (mod ,c (maze-cols ,w))))

(defmacro maze-ref (w r c)
  `(aref (maze-data ,w) (maze-pt ,w ,r ,c)))

(defun new-maze (rows cols)
  (setq rows (1+ rows)
        cols (1+ cols))
  (let ((m (make-maze :rows rows :cols cols :data (make-vector (* rows cols) nil))))

    (dotimes (r rows)
      (dotimes (c cols)
        (setf (maze-ref m r c) (copy-sequence '(wall ceiling)))))

    (dotimes (r rows)
      (maze-set m r (1- cols) 'visited))

    (dotimes (c cols)
      (maze-set m (1- rows) c 'visited))

    (maze-unset m 0 0 'ceiling) ;; Maze Entrance
    (maze-unset m (1- rows) (- cols 2) 'ceiling) ;; Maze Exit

    m))

(defun maze-is-set (maze r c v)
  (member v (maze-ref maze r c)))

(defun maze-set (maze r c v)
  (let ((cell (maze-ref maze r c)))
    (when (not (member v cell))
      (setf (maze-ref maze r c) (cons v cell)))))

(defun maze-unset (maze r c v)
  (setf (maze-ref maze r c) (delete v (maze-ref maze r c))))

(defun print-maze (maze &optional marks)
  (dotimes (r (1- (maze-rows maze)))

    (dotimes (c (1- (maze-cols maze)))
      (princ (if (maze-is-set maze r c 'ceiling) "+---" "+   ")))
    (princ "+")
    (terpri)

    (dotimes (c (1- (maze-cols maze)))
      (princ (if (maze-is-set maze r c 'wall) "|" " "))
      (princ (if (member (cons r c) marks) " * " "   ")))
    (princ "|")
    (terpri))

  (dotimes (c (1- (maze-cols maze)))
    (princ (if (maze-is-set maze (1- (maze-rows maze)) c 'ceiling) "+---" "+   ")))
  (princ "+")
  (terpri))

(defun shuffle (lst)
  (sort lst (lambda (a b) (= 1 (random 2)))))

(defun to-visit (maze row col)
  (let (unvisited)
    (dolist (p '((0 . +1) (0 . -1) (+1 . 0) (-1 . 0)))
      (let ((r (+ row (car p)))
            (c (+ col (cdr p))))
      (unless (maze-is-set maze r c 'visited)
        (push (cons r c) unvisited))))
    unvisited))

(defun make-passage (maze r1 c1 r2 c2)
  (if (= r1 r2)
      (if (< c1 c2)
          (maze-unset maze r2 c2 'wall) ; right
        (maze-unset maze r1 c1 'wall))  ; left
    (if (< r1 r2)
        (maze-unset maze r2 c2 'ceiling)   ; up
      (maze-unset maze r1 c1 'ceiling))))  ; down

(defun dig-maze (maze row col)
  (let (backup
        (run 0))
    (maze-set maze row col 'visited)
    (push (cons row col) backup)
    (while backup
      (setq run (1+ run))
      (when (> run (/ (+ row col) 3))
        (setq run 0)
        (setq backup (shuffle backup)))
      (setq row (caar backup)
            col (cdar backup))
      (let ((p (shuffle (to-visit maze row col))))
        (if p
            (let ((r (caar p))
                  (c (cdar p)))
              (make-passage maze row col r c)
              (maze-set maze r c 'visited)
              (push (cons r c) backup))
          (pop backup)
          (setq backup (shuffle backup))
          (setq run 0))))))

(defun generate (rows cols)
  (let* ((m (new-maze rows cols)))
    (dig-maze m (random rows) (random cols))
    (print-maze m)))

(defun parse-ceilings (line)
  (let (rtn
        (i 1))
    (while (< i (length line))
      (push (eq ?- (elt line i)) rtn)
      (setq i (+ i 4)))
    (nreverse rtn)))

(defun parse-walls (line)
  (let (rtn
        (i 0))
    (while (< i (length line))
      (push (eq ?| (elt line i)) rtn)
      (setq i (+ i 4)))
    (nreverse rtn)))

(defun parse-maze (file-name)
  (let ((rtn)
        (lines (with-temp-buffer
                 (insert-file-contents-literally file-name)
                 (split-string (buffer-string) "\n" t))))
    (while lines
      (push (parse-ceilings (pop lines)) rtn)
      (push (parse-walls (pop lines)) rtn))
    (nreverse rtn)))

(defun read-maze (file-name)
  (let* ((raw (parse-maze file-name))
         (rows (1- (/ (length raw) 2)))
         (cols (length (car raw)))
         (maze (new-maze rows cols)))
    (dotimes (r rows)
      (let ((ceilings (pop raw)))
        (dotimes (c cols)
          (unless (pop ceilings)
            (maze-unset maze r c 'ceiling))))
      (let ((walls (pop raw)))
        (dotimes (c cols)
          (unless (pop walls)
            (maze-unset maze r c 'wall)))))
    maze))

(defun find-exits (maze row col)
  (let (exits)
    (dolist (p '((0 . +1) (0 . -1) (-1 . 0) (+1 . 0)))
      (let ((r (+ row (car p)))
            (c (+ col (cdr p))))
        (unless
            (cond
             ((equal p '(0 . +1)) (maze-is-set maze r   c   'wall))
             ((equal p '(0 . -1)) (maze-is-set maze row col 'wall))
             ((equal p '(+1 . 0)) (maze-is-set maze r   c   'ceiling))
             ((equal p '(-1 . 0)) (maze-is-set maze row col 'ceiling)))
          (push (cons r c) exits))))
    exits))

(defun drop-visited (maze points)
  (let (not-visited)
    (while points
      (unless (maze-is-set maze (caar points) (cdar points) 'visited)
        (push (car points) not-visited))
      (pop points))
    not-visited))

(defun solve-maze (maze)
  (let (solution
        (exit (cons (- (maze-rows maze) 2) (- (maze-cols maze) 2)))
        (pt (cons 0 0)))
    (while (not (equal pt exit))
      (maze-set maze (car pt) (cdr pt) 'visited)
      (let ((exits (drop-visited maze (find-exits maze (car pt) (cdr pt)))))
        (if (null exits)
            (setq pt (pop solution))
          (push pt solution)
          (setq pt (pop exits)))))
    (push pt solution)))

(defun solve (file-name)
  (let* ((maze (read-maze file-name))
         (solution (solve-maze maze)))
    (print-maze maze solution)))

(provide 'maze)

file: maze-solve

#!/usr/bin/env emacs -script
;; -*- lexical-binding: t -*-
;;> Solve mazes generated by maze-generator.
;;> Example: ./maze-solve maze.txt

(add-to-list 'load-path (file-name-directory load-file-name))
(require 'maze)

(solve (elt command-line-args-left 0))

{{out}}

+   +---+---+---+---+---+---+---+---+---+
| *   *   * |   |                   |   |
+---+---+   +   +---+---+   +---+---+   +
|   |     * |   |       |   |       |   |
+   +   +   +   +---+   +   +   +---+   +
|       | *   *   *   * |           |   |
+---+---+---+---+---+   +---+---+   +   +
|   |       |   |   | *   * |   |   |   |
+   +---+   +   +   +---+   +   +   +   +
|   |   |   |   |         *   * |       |
+   +   +   +   +---+   +   +   +---+   +
|   |   |   |           |   | *   *   * |
+   +   +   +---+---+---+   +---+---+   +
|   |   |               |   |   |     * |
+   +   +---+---+   +   +   +   +   +   +
|       |   |       |       |       | * |
+   +   +   +---+---+---+---+---+   +   +
|   |       |       |               | * |
+   +---+---+   +   +   +---+---+---+   +
|               |       |             * |
+---+---+---+---+---+---+---+---+---+   +

```



## Frege


{{trans|Haskell}}
{{Works with|Frege|3.20.113}}

On standard input, takes a maze made up of "+", "|", and "---" (i. e. each cell is two lines high and four characters wide), such as produced by the [[Maze generation#Haskell|Haskell]] or [[Maze generation#Java|Java]] generators.


```frege
module MazeSolver where

import frege.IO
import Data.Maybe

-- given two points, returns the average of them
average :: (Int, Int) -> (Int, Int) -> (Int, Int)
average (x, y) (x', y') = ((x + x') `div` 2, (y + y') `div` 2)

-- given a maze and a tuple of position and wall position, returns
-- true if the wall position is not blocked (first position is unused)
notBlocked :: [String] -> ((Int, Int), (Int, Int)) -> Bool
notBlocked maze (_, (x, y)) = (' ' == String.charAt (maze !! y) x)

-- given a list, a position, and an element, returns a new list
-- with the new element substituted at the position
substitute :: [a] -> Int -> a -> [a]
substitute orig pos el =
  let (before, after) = splitAt pos orig
  in before ++ [el] ++ tail after

-- like above, but for strings, since Frege strings are not
-- lists of characters
substituteString :: String -> Int -> String -> String
substituteString orig pos el =
  let before = substr orig 0 pos
      after = strtail orig (pos + 1)
  in before ++ el ++ after

-- given a maze and a position, draw a '*' at that position in the maze
draw :: [String] -> (Int, Int) -> [String]
draw maze (x,y) = substitute maze y $ substituteString row x "*"
  where row = maze !! y

-- given a maze, a previous position, and a list of tuples of potential
-- new positions and their wall positions, returns the solved maze, or
-- None if it cannot be solved
tryMoves :: [String] -> (Int, Int) -> [((Int, Int), (Int, Int))] -> Maybe [String]
tryMoves _ _ [] = Nothing
tryMoves maze prevPos ((newPos,wallPos):more) =
  case solve' maze newPos prevPos
       of Nothing -> tryMoves maze prevPos more
          Just maze' -> Just $ foldl draw maze' [newPos, wallPos]

-- given a maze, a new position, and a previous position, returns
-- the solved maze, or None if it cannot be solved
-- (assumes goal is upper-left corner of maze)
solve' :: [String] -> (Int, Int) -> (Int, Int) -> Maybe [String]
solve' maze (2, 1) _ = Just maze
solve' maze (x, y) prevPos =
  let newPositions = [(x, y - 2), (x + 4, y), (x, y + 2), (x - 4, y)]
      notPrev pos' = pos' /= prevPos
      newPositions' = filter notPrev newPositions
      wallPositions = map (average (x,y)) newPositions'
      zipped = zip newPositions' wallPositions
      legalMoves = filter (notBlocked maze) zipped
  in tryMoves maze (x,y) legalMoves

-- given a maze, returns a solved maze, or None if it cannot be solved
-- (starts at lower right corner and goes to upper left corner)
solve :: [String] -> Maybe [String]
solve maze = solve' (draw maze start) start (-1, -1)
  where startx = (length $ head maze) - 3
        starty = (length maze) - 2
        start = (startx, starty)

-- takes unsolved maze on standard input, prints solved maze on standard output
main _ = do
  isin  <- stdin
  isrin <- InputStreamReader.new isin
  brin  <- BufferedReader.fromISR isrin
  lns <- BufferedReader.getlines brin
  printStr $ unlines $ fromMaybe ["can't solve"] $ solve lns
```


{{out}}


```txt

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| * |         * * * * * |       |       |                   |       |       |
+ * +---+---+ * +---+ * +---+   +   +   +   +---+---+---+   +   +   +   +   +
| * | * * * * * |   | * |       |   |       | * * * * * |       |       |   |
+ * + * +---+---+   + * +   +---+   +---+---+ * +---+ * +   +---+---+---+   +
| * * * |       |   | * |   |       | * * * * * | * * * |   | * * * * * |   |
+---+---+   +   +   + * +   +   +---+ * +---+---+ * +---+---+ * +---+ * +   +
|           |       | * |       |   | * |   | * * * | * * * * * | * * * |   |
+   +   +---+---+---+ * +   +---+   + * +   + * +---+ * +---+---+ * +---+   +
|   |   | * * * * * * * |           | * |     * * * * * |       | * * * * * |
+   +   + * +---+---+---+---+---+---+ * +---+---+---+---+   +   +---+---+ * +
|   |   | * * * | * * * * * | * * * | * * * | * * * |       |           | * |
+   +---+---+ * + * +---+ * + * + * +---+ * + * + * +---+   +---+   +   + * +
|   |       | * | * | * * * | * | * * * | * * * | * * * |   |   |   |   | * |
+   +   +   + * + * + * +---+ * +---+ * +---+---+---+ * +   +   +   +---+ * +
|       |     * * * | * * * * * |     * * * * * * * * * |       |         * |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
runtime 0.249 wallclock seconds.

```



## Go

Generates maze, picks start and finish cells randomly, solves, prints.

```go
package main

import (
    "bytes"
    "fmt" 
    "math/rand"
    "time"
)

type maze struct { 
    c2 [][]byte // cells by row
    h2 [][]byte // horizontal walls by row (ignore first row)
    v2 [][]byte // vertical walls by row (ignore first of each column)
}

func newMaze(rows, cols int) *maze {
    c := make([]byte, rows*cols)              // all cells
    h := bytes.Repeat([]byte{'-'}, rows*cols) // all horizontal walls
    v := bytes.Repeat([]byte{'|'}, rows*cols) // all vertical walls
    c2 := make([][]byte, rows)                // cells by row
    h2 := make([][]byte, rows)                // horizontal walls by row
    v2 := make([][]byte, rows)                // vertical walls by row
    for i := range h2 {
        c2[i] = c[i*cols : (i+1)*cols]
        h2[i] = h[i*cols : (i+1)*cols]
        v2[i] = v[i*cols : (i+1)*cols]
    }
    return &maze{c2, h2, v2}
}   
    
func (m *maze) String() string {
    hWall := []byte("+---")
    hOpen := []byte("+   ")
    vWall := []byte("|   ")
    vOpen := []byte("    ")
    rightCorner := []byte("+\n")
    rightWall := []byte("|\n")
    var b []byte
    for r, hw := range m.h2 {
        for _, h := range hw {
            if h == '-' || r == 0 {
                b = append(b, hWall...)
            } else {
                b = append(b, hOpen...)
                if h != '-' && h != 0 {
                    b[len(b)-2] = h
                }
            }
        }
        b = append(b, rightCorner...)
        for c, vw := range m.v2[r] {
            if vw == '|' || c == 0 {
                b = append(b, vWall...)
            } else {
                b = append(b, vOpen...)
                if vw != '|' && vw != 0 {
                    b[len(b)-4] = vw
                }
            }
            if m.c2[r][c] != 0 {
                b[len(b)-2] = m.c2[r][c]
            }
        }
        b = append(b, rightWall...)
    }
    for _ = range m.h2[0] {
        b = append(b, hWall...)
    }
    b = append(b, rightCorner...)
    return string(b)
}

func (m *maze) gen() {
    m.g2(rand.Intn(len(m.c2)), rand.Intn(len(m.c2[0])))
}

const (
    up = iota
    dn
    rt
    lf
)

func (m *maze) g2(r, c int) {
    m.c2[r][c] = ' '
    for _, dir := range rand.Perm(4) {
        switch dir {
        case up:
            if r > 0 && m.c2[r-1][c] == 0 {
                m.h2[r][c] = 0
                m.g2(r-1, c)
            }
        case lf:
            if c > 0 && m.c2[r][c-1] == 0 {
                m.v2[r][c] = 0
                m.g2(r, c-1)
            }
        case dn:
            if r < len(m.c2)-1 && m.c2[r+1][c] == 0 {
                m.h2[r+1][c] = 0
                m.g2(r+1, c)
            }
        case rt:
            if c < len(m.c2[0])-1 && m.c2[r][c+1] == 0 {
                m.v2[r][c+1] = 0
                m.g2(r, c+1)
            } 
        }
    }
}

func main() {
    rand.Seed(time.Now().UnixNano())
    const height = 4
    const width = 7
    m := newMaze(height, width)
    m.gen() 
    m.solve(
        rand.Intn(height), rand.Intn(width),
        rand.Intn(height), rand.Intn(width))
    fmt.Print(m)
}   
    
func (m *maze) solve(ra, ca, rz, cz int) {
    var rSolve func(ra, ca, dir int) bool
    rSolve = func(r, c, dir int) bool {
        if r == rz && c == cz {
            m.c2[r][c] = 'F'
            return true
        }
        if dir != dn && m.h2[r][c] == 0 {
            if rSolve(r-1, c, up) {
                m.c2[r][c] = '^'
                m.h2[r][c] = '^'
                return true
            }
        }
        if dir != up && r+1 < len(m.h2) && m.h2[r+1][c] == 0 {
            if rSolve(r+1, c, dn) {
                m.c2[r][c] = 'v'
                m.h2[r+1][c] = 'v'
                return true
            }
        }
        if dir != lf && c+1 < len(m.v2[0]) && m.v2[r][c+1] == 0 {
            if rSolve(r, c+1, rt) {
                m.c2[r][c] = '>'
                m.v2[r][c+1] = '>'
                return true
            }
        }
        if dir != rt && m.v2[r][c] == 0 {
            if rSolve(r, c-1, lf) {
                m.c2[r][c] = '<'
                m.v2[r][c] = '<'
                return true
            }
        }
        return false
    }
    rSolve(ra, ca, -1)
    m.c2[ra][ca] = 'S'
}
```

{{out|Example output:}}

```txt

+---+---+---+---+---+---+---+
|           | v < < < < < < |
+   +---+   + v +   +---+ ^ +
|       | F < < |   |     ^ |
+---+---+---+---+   +---+ ^ +
|               |       | ^ |
+   +---+---+   +---+   + ^ +
|   |                   | S |
+---+---+---+---+---+---+---+

```



## Haskell


{{Works with|GHC|7.4.1}}

On standard input, takes a maze made up of "+", "|", and "---" (i. e. each cell is two lines high and four characters wide), such as produced by the [[Maze generation#Haskell|Haskell]] or [[Maze generation#Java|Java]] generators.



```haskell
#!/usr/bin/runhaskell

import Data.Maybe (fromMaybe)

-- given two points, returns the average of them
average :: (Int, Int) -> (Int, Int) -> (Int, Int)
average (x, y) (x_, y_) = ((x + x_) `div` 2, (y + y_) `div` 2)

-- given a maze and a tuple of position and wall position, returns
-- true if the wall position is not blocked (first position is unused)
notBlocked :: [String] -> ((Int, Int), (Int, Int)) -> Bool
notBlocked maze (_, (x, y)) = ' ' == (maze !! y) !! x

-- given a list, a position, and an element, returns a new list
-- with the new element substituted at the position
-- (it seems such a function should exist in the standard library;
-- I must be missing it)
substitute :: [a] -> Int -> a -> [a]
substitute orig pos el =
  let (before, after) = splitAt pos orig
  in before ++ [el] ++ tail after

-- given a maze and a position, draw a '*' at that position in the maze
draw :: [String] -> (Int, Int) -> [String]
draw maze (x, y) =
  let row = maze !! y
  in substitute maze y $ substitute row x '*'

-- given a maze, a previous position, and a list of tuples of potential
-- new positions and their wall positions, returns the solved maze, or
-- None if it cannot be solved
tryMoves :: [String]
         -> (Int, Int)
         -> [((Int, Int), (Int, Int))]
         -> Maybe [String]
tryMoves _ _ [] = Nothing
tryMoves maze prevPos ((newPos, wallPos):more) =
  case solve_ maze newPos prevPos of
    Nothing -> tryMoves maze prevPos more
    Just maze_ -> Just $ foldl draw maze_ [newPos, wallPos]

-- given a maze, a new position, and a previous position, returns
-- the solved maze, or None if it cannot be solved
-- (assumes goal is upper-left corner of maze)
solve_ :: [String] -> (Int, Int) -> (Int, Int) -> Maybe [String]
solve_ maze (2, 1) _ = Just maze
solve_ maze pos@(x, y) prevPos =
  let newPositions = [(x, y - 2), (x + 4, y), (x, y + 2), (x - 4, y)]
      notPrev pos_ = pos_ /= prevPos
      newPositions_ = filter notPrev newPositions
      wallPositions = map (average pos) newPositions_
      zipped = zip newPositions_ wallPositions
      legalMoves = filter (notBlocked maze) zipped
  in tryMoves maze pos legalMoves

-- given a maze, returns a solved maze, or None if it cannot be solved
-- (starts at lower right corner and goes to upper left corner)
solve :: [String] -> Maybe [String]
solve maze = solve_ (draw maze start) start (-1, -1)
  where
    startx = length (head maze) - 3
    starty = length maze - 2
    start = (startx, starty)

-- takes unsolved maze on standard input, prints solved maze on standard output
main =
  let main_ = unlines . fromMaybe ["can_t solve"] . solve . lines
  in interact main_

```

{{out}}

```txt

+---+---+---+---+---+---+---+---+---+---+---+
| * |           |               |           |
+ * +   +---+   +   +---+   +---+   +---+   +
| * |       |   |       |   |           |   |
+ * +---+   +   +---+   +---+   +---+---+   +
| *         |       |       |   |   |       |
+ * +---+---+---+   +---+   +   +   +   +   +
| * * * * * * * |       |           |   |   |
+---+---+---+ * +---+   +---+---+---+   +   +
|           | * * * |   |           |   |   |
+   +---+   +---+ * +   +   +---+   +   +---+
|       |   | * * * |       |   |   |       |
+---+---+   + * +---+---+---+   +   +---+   +
|           | * * * * * |       |       |   |
+   +---+---+---+---+ * +---+   +---+---+   +
|                     * * * * * * * * * * * |
+---+---+---+---+---+---+---+---+---+---+---+

```


=={{header|Icon}} and {{header|Unicon}}==
The following code works with the solution from [[Maze_generation#Icon_and_Unicon|Maze Generation]].
[[File:Maze-solved-unicon-20x20-1321199667.gif|right|thumb|20x20 solved start @ red]]

Replace the main with this:

```Icon
procedure main(A)
   /mh := \A[1] | 12
   /mw := \A[2] | 16
   mz := DisplayMaze(GenerateMaze(mh,mw))
   WriteImage(mz.filename)              # save file
   WAttrib(mz.window,"canvas=normal")   # show it
   until Event() == &lpress # wait for left mouse press
   Solver(mz.maze)
   DisplayMazeSolution(mz)
   WriteImage(mz.filename ?:= (="maze-", "maze-solved-" || tab(0)))
   until Event() == &lpress # wait
   close(mz.window)
end
```


And include this after the Generator and Display procedures.

```Icon
procedure Solver(r,c)
static maze,h,w,rd

   if type(r) == "list" then { # ------------------- Top Level (r == maze)
      h := *(maze := r)                              # height
      w := *maze[1]                                  # width
      every r := 1 to h & c := 1 to w do             # remove breadcrumbs
         maze[r,c] := iand(maze[r,c],NORTH+EAST+SOUTH+WEST+START+FINISH)                               
      every ((r := 1 | h) & (c := 1 to w)) |         # search perimiter
            ((r := 1 to h) & (c := 1 | w)) do 
            if iand(maze[r,c],START) > 0 then break  # until start found
      Solver(r,c)                                    # recurse through maze      
      return 1(.maze,maze := &null)                  # return maze and reset 
      }
   else                        # ------------------- Recurse way through maze
      if iand(x := maze[r,c],SEEN) = 0  then {       # in bounds and not seen?
         (iand(x,FINISH) > 0, maze[r,c] +:= PATH, return ) # at finish? - done!
         maze[r,c] +:= SEEN                          # drop bread crumb
         (iand(x,NORTH) > 0, Solver(r-1,c), maze[r,c] +:= PATH, return) 
         (iand(x,EAST)  > 0, Solver(r,c+1), maze[r,c] +:= PATH, return) 
         (iand(x,SOUTH) > 0, Solver(r+1,c), maze[r,c] +:= PATH, return)  
         (iand(x,WEST)  > 0, Solver(r,c-1), maze[r,c] +:= PATH, return)   
         }
end

procedure DisplayMazeSolution(mz)                  #: draw marked PATH
&window := mz.window
maze := mz.maze
WAttrib("dx="||(dxy:=BORDER+CELL/2),"dy="||dxy)
every (r := 1 to *maze) & (c := 1 to *maze[1]) do {
   if fg ~=== "blue" then Fg(fg := "blue")
   if iand(maze[r,c],START) > 0 then Fg(fg := "red")
   if iand(maze[r,c],PATH) > 0 then
      FillCircle(x := CELL*(c-1),y := CELL*(r-1),rad := CELL/5)
   }
return mz
end
```


The following Unicon-only solution is a variant of the above.  It shares the same
maze generation code and maze display code with the above but spawns threads
to parallelize the searching.  The algorithm runs each path to a dead end, a target, or a
length greater than the current shortest path to a target
and works if there are multiple target cells,  multiple paths to those targets, or
cyclic paths.  The shortest solution path is then marked and displayed.


```unicon
global showMice

import Utils	# To get 'Args' singleton class

procedure main(A)
   Args(A)
   if \Args().get("help","yes") then helpMesg()
   showMice := Args().get("showmice","yes") # Show movements of all mice
   mh := Args().get("rows") | 32            # Maze height (rows)
   mw := Args().get("cols") | 48            # Maze width (columns)

   mz := DisplayMaze(GenerateMaze(mh,mw))   # Build and show maze

   QMouse(mz.maze,findStart(mz.maze),&null,0)   # Start first quantum mouse
   waitForCompletion() # block until all quantum mice have finished

   # Mark the best path into the maze and display it.
   if showPath(mz.maze) then DisplayMazeSolution(mz) else write("No path found!")
end

procedure helpMesg()
    write(&errout,"Usage: qSolve [--showmice] [--cols=C] [--rows=R]")
    write(&errout,"\twhere:")
    write(&errout,"\t\t--showmice # displays all mice paths as they search")
    write(&errout,"\t\t--cols=C   # sets maze width to C (default 16) columns")
    write(&errout,"\t\t--rows=R   # sets maze height to R (default 12) rows")
    stop()
end

# A "Quantum-mouse" for traversing mazes. Each mouse lives for just one cell, but
#   can spawn other mice to search from adjoining cells.

global qMice, bestMouse, bestMouseLock, region, qMiceEmpty
record Position(r,c)

# Must match values used in maze generation!
$define FINISH 64 # exit
$define START  32 # entrance
$define PATH  128 
$define SEEN   16 # bread crumbs for generator
$define NORTH   8 # sides ...
$define EAST    4
$define SOUTH   2
$define WEST    1
$define EMPTY   0 # like new

class QMouse(maze, loc, parent, len, val)

   method getLoc(); return loc; end
   method getParent(); return \parent; end
   method getLen(); return len; end
   method atEnd();   return EMPTY ~= iand(val, FINISH); end
   method goNorth(); if EMPTY ~= iand(val,NORTH) then return visit(loc.r-1, loc.c); end
   method goSouth(); if EMPTY ~= iand(val,SOUTH) then return visit(loc.r+1, loc.c); end
   method goEast();  if EMPTY ~= iand(val,EAST)  then return visit(loc.r, loc.c+1); end
   method goWest();  if EMPTY ~= iand(val,WEST)  then return visit(loc.r, loc.c-1); end

   method visit(r,c)
       critical region[r,c]: if EMPTY = iand(maze[r,c],SEEN) then {
           if /bestMouse | (len <= bestMouse.getLen()) then { # Keep going?
               mark(maze, r,c)
               unlock(region[r,c])
               return Position(r,c)
               }
           }
   end

initially (m, l, p, n)
    initial {   # Construct critical region mutexes and completion condvar
        qMice := mutex(set())
        qMiceEmpty := condvar()
        bestMouseLock := mutex()
        region := list(*m)            # Minimize critical region size
        every r := 1 to *m do region[r] := list(*m[1])
        every !!region := mutex()
        }
    maze := m
    loc := l
    parent := p
    len := n+1
    val := maze[loc.r,loc.c] | fail   # Fail if outside maze
    insert(qMice, self)
    thread {
        if atEnd() then {
            critical bestMouseLock:
                if /bestMouse | (len < bestMouse.getLen()) then bestMouse := self
            }
        else {         # Spawn more mice to look for finish
            QMouse(maze, goNorth(), self, len)
            QMouse(maze, goSouth(), self, len)
            QMouse(maze, goEast(), self, len)
            QMouse(maze, goWest(), self, len)
            }

        delete(qMice, self)
        if *qMice=0 then signal(qMiceEmpty)
        }
end

procedure mark(maze, r,c)
    ior(maze[r,c],SEEN)
    if \showMice then markCell(r,c,"grey",5)
    return Position(r,c)
end

procedure clearMaze(maze)  # Clear out dregs from maze creation
    every r := 1 to *maze & c := 1 to *maze[1] do  # remove breadcrumbs
        maze[r,c] := iand(maze[r,c],NORTH+EAST+SOUTH+WEST+START+FINISH)
end

procedure findStart(maze)  # Anywhere in maze
    clearMaze(maze)                                # Remove breadcrumbs
    every r := 1 to *maze & c := 1 to *maze[1] do  # Locate START cell
        if EMPTY ~= iand(maze[r,c],START) then return mark(maze, r,c)
end

procedure showPath(maze)
    if path := \bestMouse then {   # Mark it in maze
       repeat {
           loc := path.getLoc()
           maze[loc.r,loc.c] +:= PATH
           path := \path.getParent() | break
           }
       return
       }
end

procedure waitForCompletion()
   critical qMiceEmpty: while *qMice > 0 do wait(qMiceEmpty)
end
```



## J

Due to reports that the program failed, the generation and solver are shown together.  The display verb was extended to include a dyadic definition.  The complete program was tested with j 8.0.2 on linux using no profile, the command
$ ijconsole -jprofile

```J

maze=:4 :0
  assert.0<:n=.<:x*y
  horiz=. 0$~x,y-1
  verti=. 0$~(x-1),y
  path=.,:here=. ?x,y
  unvisited=.0 (u{graph do.
     if. -. v e. previous do.
       alt =. >: u { dist
       if. alt < v { dist do.
         dist =. alt v } dist
         previous =. u v } previous
         if. v e. Q do.
           echo 'belch'
         else.
           Q =. Q,v
         end.
       end.
     end.
   end.
 end.
 dist;previous
)

path =: 3 : 0
  p =. <:#y
  while. _ > {:p do.
    p =. p,y{~{:p
  end.
  |.}:p
)

solve=:3 :0
  NB. convert walls to graph
  shape =. }.@$@:>
  ew =. (,.&0 ,: 0&,.)@>@{.  NB. east west doors
  ns =. (, &0 ,: 0&, )@>@{:
  cell_offsets =. 1 _1 1 _1 * 2 # 1 , {:@shape
  cell_numbers =. i.@shape
  neighbors =. (cell_numbers +"_ _1 cell_offsets *"_1 (ew , ns))y
  graph =. (|:@(,/"_1) <@-."1 0 ,@i.@shape)neighbors NB. list of boxed neighbors
  NB. solve it
  path , > {: 0 Dijkstra_equal_weights graph
)

display=:3 :0
  size=. >.&$&>/y
  text=. (}:1 3$~2*1+{:size)#"1":size$<' '
  'hdoor vdoor'=. 2 4&*&.>&.> (#&,{@;&i./@$)&.> y
  ' ' (a:-.~0 1;0 2; 0 3;(2 1-~$text);(1 4&+&.> hdoor),,vdoor+&.>"0/2 1;2 2;2 3)} text
:
  a=. display y
  size=. >.&$&>/y
  columns=. {: size
  cells =. <"1(1 2&p.@<.@(%&columns) ,.  2 4&p.@(columns&|))x
  'o' cells } a  NB. exercise, replace cells with a gerund to draw arrows on the path.
)

```

Example:
```txt

   4 (display~ solve)@maze 20
+   +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| o   o   o | o   o   o   o     | o   o   o   o   o   o   o   o |               |
+---+---+   +   +---+---+   +---+   +---+---+   +---+---+---+   +   +   +---+   +
| o   o | o | o |       | o   o   o     |       |           | o |   |       |   |
+   +   +   +   +   +   +---+---+---+   +   +---+---+   +   +   +---+   +---+   +
| o | o   o | o |   |   |           |   |           |   |   | o   o |   | o   o |
+   +---+---+   +   +   +   +---+   +---+---+---+   +   +---+---+   +---+   +   +
| o   o   o   o     |   |   |                       |             o   o   o | o  
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

```



## Java


```java
import java.io.*;
import java.util.*;

public class MazeSolver
{
    /**
     * Reads a file into an array of strings, one per line.
     */
    private static String[] readLines (InputStream f) throws IOException
    {
        BufferedReader r =
            new BufferedReader (new InputStreamReader (f, "US-ASCII"));
        ArrayList lines = new ArrayList();
        String line;
        while ((line = r.readLine()) != null)
            lines.add (line);
        return lines.toArray(new String[0]);
    }

    /**
     * Makes the maze half as wide (i. e. "+---+" becomes "+-+"), so that
     * each cell in the maze is the same size horizontally as vertically.
     * (Versus the expanded version, which looks better visually.)
     * Also, converts each line of the maze from a String to a
     * char[], because we'll want mutability when drawing the solution later.
     */
    private static char[][] decimateHorizontally (String[] lines)
    {
        final int width = (lines[0].length() + 1) / 2;
        char[][] c = new char[lines.length][width];
        for (int i = 0  ;  i < lines.length  ;  i++)
            for (int j = 0  ;  j < width  ;  j++)
                c[i][j] = lines[i].charAt (j * 2);
        return c;
    }

    /**
     * Given the maze, the x and y coordinates (which must be odd),
     * and the direction we came from, return true if the maze is
     * solvable, and draw the solution if so.
     */
    private static boolean solveMazeRecursively (char[][] maze,
                                                 int x, int y, int d)
    {
        boolean ok = false;
        for (int i = 0  ;  i < 4  &&  !ok  ;  i++)
            if (i != d)
                switch (i)
                    {
                        // 0 = up, 1 = right, 2 = down, 3 = left
                    case 0:
                        if (maze[y-1][x] == ' ')
                            ok = solveMazeRecursively (maze, x, y - 2, 2);
                        break;
                    case 1:
                        if (maze[y][x+1] == ' ')
                            ok = solveMazeRecursively (maze, x + 2, y, 3);
                        break;
                    case 2:
                        if (maze[y+1][x] == ' ')
                            ok = solveMazeRecursively (maze, x, y + 2, 0);
                        break;
                    case 3:
                        if (maze[y][x-1] == ' ')
                            ok = solveMazeRecursively (maze, x - 2, y, 1);
                        break;
                    }
        // check for end condition
        if (x == 1  &&  y == 1)
            ok = true;
        // once we have found a solution, draw it as we unwind the recursion
        if (ok)
            {
                maze[y][x] = '*';
                switch (d)
                    {
                    case 0:
                        maze[y-1][x] = '*';
                        break;
                    case 1:
                        maze[y][x+1] = '*';
                        break;
                    case 2:
                        maze[y+1][x] = '*';
                        break;
                    case 3:
                        maze[y][x-1] = '*';
                        break;
                    }
            }
        return ok;
    }

    /**
     * Solve the maze and draw the solution.  For simplicity,
     * assumes the starting point is the lower right, and the
     * ending point is the upper left.
     */
    private static void solveMaze (char[][] maze)
    {
        solveMazeRecursively (maze, maze[0].length - 2, maze.length - 2, -1);
    }

    /**
     * Opposite of decimateHorizontally().  Adds extra characters to make
     * the maze "look right", and converts each line from char[] to
     * String at the same time.
     */
    private static String[] expandHorizontally (char[][] maze)
    {
        char[] tmp = new char[3];
        String[] lines = new String[maze.length];
        for (int i = 0  ;  i < maze.length  ;  i++)
            {
                StringBuilder sb = new StringBuilder(maze[i].length * 2);
                for (int j = 0  ;  j < maze[i].length  ;  j++)
                    if (j % 2 == 0)
                        sb.append (maze[i][j]);
                    else
                        {
                            tmp[0] = tmp[1] = tmp[2] = maze[i][j];
                            if (tmp[1] == '*')
                                tmp[0] = tmp[2] = ' ';
                            sb.append (tmp);
                        }
                lines[i] = sb.toString();
            }
        return lines;
    }

    /**
     * Accepts a maze as generated by:
     * http://rosettacode.org/wiki/Maze_generation#Java
     * in a file whose name is specified as a command-line argument,
     * or on standard input if no argument is specified.
     */
    public static void main (String[] args) throws IOException
    {
        InputStream f = (args.length > 0
                         ?  new FileInputStream (args[0])
                         :  System.in);
        String[] lines = readLines (f);
        char[][] maze = decimateHorizontally (lines);
        solveMaze (maze);
        String[] solvedLines = expandHorizontally (maze);
        for (int i = 0  ;  i < solvedLines.length  ;  i++)
            System.out.println (solvedLines[i]);
    }
}
```

{{out}}

```txt

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| * |           |               |         * * * * * |           |
+ * +   +   +---+   +---+---+   +   +---+ * +---+ * +---+   +---+
| * |   |       |   | * * * |   |       | * * * | * * * |       |
+ * +   +---+   +   + * + * +   +---+   +---+ * +---+ * +---+   +
| * |       |       | * | * |           | * * * |   | * |       |
+ * +---+---+   +---+ * + * +---+---+   + * +---+   + * +   +   +
| * | * * * |       | * | * | * * * |   | * |       | * |   |   |
+ * + * + * +---+   + * + * + * + * +---+ * +---+   + * +   +---+
| * * * | * |       | * | * * * | * * * * * |       | * |       |
+---+---+ * +---+---+ * +---+---+---+---+---+   +---+ * +---+   +
|       | * * * | * * * |               |           | * * * |   |
+   +---+---+ * + * +---+   +---+---+   +   +---+   +---+ * +   +
| * * * * * * * | * |   |           |   |   |   |       | * * * |
+ * +---+---+---+ * +   +   +---+   +---+   +   +   +---+---+ * +
| * * * * * * * * * |           |               |             * |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

```



###  Animated version 

[[File:maze_java.png|300px|thumb|right]]
Uses code from maze generation task
{{works with|Java|8}}

```java
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.Path2D;
import java.util.*;
import javax.swing.*;

public class MazeGenerator extends JPanel {
    enum Dir {
        N(1, 0, -1), S(2, 0, 1), E(4, 1, 0), W(8, -1, 0);
        final int bit;
        final int dx;
        final int dy;
        Dir opposite;

        // use the static initializer to resolve forward references
        static {
            N.opposite = S;
            S.opposite = N;
            E.opposite = W;
            W.opposite = E;
        }

        Dir(int bit, int dx, int dy) {
            this.bit = bit;
            this.dx = dx;
            this.dy = dy;
        }
    };
    final int nCols;
    final int nRows;
    final int cellSize = 25;
    final int margin = 25;
    final int[][] maze;
    LinkedList solution;

    public MazeGenerator(int size) {
        setPreferredSize(new Dimension(650, 650));
        setBackground(Color.white);
        nCols = size;
        nRows = size;
        maze = new int[nRows][nCols];
        solution = new LinkedList<>();
        generateMaze(0, 0);

        addMouseListener(new MouseAdapter() {
            @Override
            public void mousePressed(MouseEvent e) {
                new Thread(() -> {
                    solve(0);
                }).start();
            }
        });
    }

    @Override
    public void paintComponent(Graphics gg) {
        super.paintComponent(gg);
        Graphics2D g = (Graphics2D) gg;
        g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
                RenderingHints.VALUE_ANTIALIAS_ON);

        g.setStroke(new BasicStroke(5));
        g.setColor(Color.black);

        // draw maze
        for (int r = 0; r < nRows; r++) {
            for (int c = 0; c < nCols; c++) {

                int x = margin + c * cellSize;
                int y = margin + r * cellSize;

                if ((maze[r][c] & 1) == 0) // N
                    g.drawLine(x, y, x + cellSize, y);

                if ((maze[r][c] & 2) == 0) // S
                    g.drawLine(x, y + cellSize, x + cellSize, y + cellSize);

                if ((maze[r][c] & 4) == 0) // E
                    g.drawLine(x + cellSize, y, x + cellSize, y + cellSize);

                if ((maze[r][c] & 8) == 0) // W
                    g.drawLine(x, y, x, y + cellSize);
            }
        }

        // draw pathfinding animation
        int offset = margin + cellSize / 2;

        Path2D path = new Path2D.Float();
        path.moveTo(offset, offset);

        for (int pos : solution) {
            int x = pos % nCols * cellSize + offset;
            int y = pos / nCols * cellSize + offset;
            path.lineTo(x, y);
        }

        g.setColor(Color.orange);
        g.draw(path);

        g.setColor(Color.blue);
        g.fillOval(offset - 5, offset - 5, 10, 10);

        g.setColor(Color.green);
        int x = offset + (nCols - 1) * cellSize;
        int y = offset + (nRows - 1) * cellSize;
        g.fillOval(x - 5, y - 5, 10, 10);

    }

    void generateMaze(int r, int c) {
        Dir[] dirs = Dir.values();
        Collections.shuffle(Arrays.asList(dirs));
        for (Dir dir : dirs) {
            int nc = c + dir.dx;
            int nr = r + dir.dy;
            if (withinBounds(nr, nc) && maze[nr][nc] == 0) {
                maze[r][c] |= dir.bit;
                maze[nr][nc] |= dir.opposite.bit;
                generateMaze(nr, nc);
            }
        }
    }

    boolean withinBounds(int r, int c) {
        return c >= 0 && c < nCols && r >= 0 && r < nRows;
    }

    boolean solve(int pos) {
        if (pos == nCols * nRows - 1)
            return true;

        int c = pos % nCols;
        int r = pos / nCols;

        for (Dir dir : Dir.values()) {
            int nc = c + dir.dx;
            int nr = r + dir.dy;
            if (withinBounds(nr, nc) && (maze[r][c] & dir.bit) != 0
                    && (maze[nr][nc] & 16) == 0) {

                int newPos = nr * nCols + nc;

                solution.add(newPos);
                maze[nr][nc] |= 16;

                animate();

                if (solve(newPos))
                    return true;

                animate();

                solution.removeLast();
                maze[nr][nc] &= ~16;
            }
        }

        return false;
    }

    void animate() {
        try {
            Thread.sleep(50L);
        } catch (InterruptedException ignored) {
        }
        repaint();
    }

    public static void main(String[] args) {
        SwingUtilities.invokeLater(() -> {
            JFrame f = new JFrame();
            f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
            f.setTitle("Maze Generator");
            f.setResizable(false);
            f.add(new MazeGenerator(24), BorderLayout.CENTER);
            f.pack();
            f.setLocationRelativeTo(null);
            f.setVisible(true);
        });
    }
}
```



## JavaScript

Animated: generating and solving.
To start solving, click to choose a 'start' and an 'end' points.
Go [http://paulo-jorente.de/tests/mazesolver/ here] to see it in action. ```javascript var ctx, wid, hei, cols, rows, maze, stack = [], start = {x:-1, y:-1}, end = {x:-1, y:-1}, grid = 8; function drawMaze() { for( var i = 0; i < cols; i++ ) { for( var j = 0; j < rows; j++ ) { switch( maze[i][j] ) { case 0: ctx.fillStyle = "black"; break; case 1: ctx.fillStyle = "green"; break; case 2: ctx.fillStyle = "red"; break; case 3: ctx.fillStyle = "yellow"; break; case 4: ctx.fillStyle = "#500000"; break; } ctx.fillRect( grid * i, grid * j, grid, grid ); } } } function getFNeighbours( sx, sy, a ) { var n = []; if( sx - 1 > 0 && maze[sx - 1][sy] == a ) { n.push( { x:sx - 1, y:sy } ); } if( sx + 1 < cols - 1 && maze[sx + 1][sy] == a ) { n.push( { x:sx + 1, y:sy } ); } if( sy - 1 > 0 && maze[sx][sy - 1] == a ) { n.push( { x:sx, y:sy - 1 } ); } if( sy + 1 < rows - 1 && maze[sx][sy + 1] == a ) { n.push( { x:sx, y:sy + 1 } ); } return n; } function solveMaze() { if( start.x == end.x && start.y == end.y ) { for( var i = 0; i < cols; i++ ) { for( var j = 0; j < rows; j++ ) { switch( maze[i][j] ) { case 2: maze[i][j] = 3; break; case 4: maze[i][j] = 0; break; } } } drawMaze(); return; } var neighbours = getFNeighbours( start.x, start.y, 0 ); if( neighbours.length ) { stack.push( start ); start = neighbours[0]; maze[start.x][start.y] = 2; } else { maze[start.x][start.y] = 4; start = stack.pop(); } drawMaze(); requestAnimationFrame( solveMaze ); } function getCursorPos( event ) { var rect = this.getBoundingClientRect(); var x = Math.floor( ( event.clientX - rect.left ) / grid ), y = Math.floor( ( event.clientY - rect.top ) / grid ); if( maze[x][y] ) return; if( start.x == -1 ) { start = { x: x, y: y }; } else { end = { x: x, y: y }; maze[start.x][start.y] = 2; solveMaze(); } } function getNeighbours( sx, sy, a ) { var n = []; if( sx - 1 > 0 && maze[sx - 1][sy] == a && sx - 2 > 0 && maze[sx - 2][sy] == a ) { n.push( { x:sx - 1, y:sy } ); n.push( { x:sx - 2, y:sy } ); } if( sx + 1 < cols - 1 && maze[sx + 1][sy] == a && sx + 2 < cols - 1 && maze[sx + 2][sy] == a ) { n.push( { x:sx + 1, y:sy } ); n.push( { x:sx + 2, y:sy } ); } if( sy - 1 > 0 && maze[sx][sy - 1] == a && sy - 2 > 0 && maze[sx][sy - 2] == a ) { n.push( { x:sx, y:sy - 1 } ); n.push( { x:sx, y:sy - 2 } ); } if( sy + 1 < rows - 1 && maze[sx][sy + 1] == a && sy + 2 < rows - 1 && maze[sx][sy + 2] == a ) { n.push( { x:sx, y:sy + 1 } ); n.push( { x:sx, y:sy + 2 } ); } return n; } function createArray( c, r ) { var m = new Array( c ); for( var i = 0; i < c; i++ ) { m[i] = new Array( r ); for( var j = 0; j < r; j++ ) { m[i][j] = 1; } } return m; } function createMaze() { var neighbours = getNeighbours( start.x, start.y, 1 ), l; if( neighbours.length < 1 ) { if( stack.length < 1 ) { drawMaze(); stack = []; start.x = start.y = -1; document.getElementById( "canvas" ).addEventListener( "mousedown", getCursorPos, false ); return; } start = stack.pop(); } else { var i = 2 * Math.floor( Math.random() * ( neighbours.length / 2 ) ) l = neighbours[i]; maze[l.x][l.y] = 0; l = neighbours[i + 1]; maze[l.x][l.y] = 0; start = l stack.push( start ) } drawMaze(); requestAnimationFrame( createMaze ); } function createCanvas( w, h ) { var canvas = document.createElement( "canvas" ); wid = w; hei = h; canvas.width = wid; canvas.height = hei; canvas.id = "canvas"; ctx = canvas.getContext( "2d" ); ctx.fillStyle = "black"; ctx.fillRect( 0, 0, wid, hei ); document.body.appendChild( canvas ); } function init() { cols = 73; rows = 53; createCanvas( grid * cols, grid * rows ); maze = createArray( cols, rows ); start.x = Math.floor( Math.random() * ( cols / 2 ) ); start.y = Math.floor( Math.random() * ( rows / 2 ) ); if( !( start.x & 1 ) ) start.x++; if( !( start.y & 1 ) ) start.y++; maze[start.x][start.y] = 0; createMaze(); } ``` HTML to test. ```txt Maze ``` ## Julia {{works with|Julia|0.6}} {{trans|Python}} ```julia """ + +---+---+ | 1 2 3 | +---+ + + | 4 5 | 6 +---+---+---+ julia> const graph = [ 0 1 0 0 0 0; 1 0 1 0 1 0; 0 1 0 0 0 1; 0 0 0 0 1 0; 0 1 0 1 0 0; 0 0 1 0 0 0] julia> dist, path = dijkstra(graph, 1) (Dict(4=>3,2=>1,3=>2,5=>2,6=>3,1=>0), Dict(4=>5,2=>1,3=>2,5=>2,6=>3,1=>0)) julia> printpath(path, 6) # Display solution of the maze 1 -> 2 -> 3 -> 6 """ function dijkstra(graph, source::Int=1) # ensure that the adjacency matrix is squared @assert size(graph, 1) == size(graph, 2) inf = typemax(Int64) n = size(graph, 1) Q = IntSet(1:n) # Set of unvisited nodes dist = Dict(n => inf for n in Q) # Unknown distance function from source to v prev = Dict(n => 0 for n in Q) # Previous node in optimal path from source dist[source] = 0 # Distance from source to source function _minimumdist(nodes) # Find the less distant node among nodes kmin, vmin = nothing, inf for (k, v) in dist if k ∈ nodes && v ≤ vmin kmin, vmin = k, v end end return kmin end # Until all nodes are visited... while !isempty(Q) u = _minimumdist(Q) # Vertex in Q with smallest dist[] pop!(Q, u) if dist[u] == inf break end # All remaining vertices are inaccessible from source for v in 1:n # Each neighbor v of u if graph[u, v] != 0 && v ∈ Q # where v has not yet been visited alt = dist[u] + graph[u, v] if alt < dist[v] # Relax (u, v, a) dist[v] = alt prev[v] = u end end end end return dist, prev end function printpath(prev::Dict, target::Int) path = "$target" while prev[target] != 0 target = prev[target] path = "$target -> " * path end println(path) end const graph = [ 0 1 0 0 0 0; 1 0 1 0 1 0; 0 1 0 0 0 1; 0 0 0 0 1 0; 0 1 0 1 0 0; 0 0 1 0 0 0] dist, path = dijkstra(graph) printpath(path, 6) ``` ## Kotlin {{trans|Java}} ```scala // Version 1.2.31 import java.io.File typealias Maze = List /** * Makes the maze half as wide (i. e. "+---+" becomes "+-+"), so that * each cell in the maze is the same size horizontally as vertically. * (Versus the expanded version, which looks better visually.) * Also, converts each line of the maze from a String to a * char[], because we'll want mutability when drawing the solution later. */ fun decimateHorizontally(lines: List): Maze { val width = (lines[0].length + 1) / 2 val c = List(lines.size) { CharArray(width) } for (i in 0 until lines.size) { for (j in 0 until width) c[i][j] = lines[i][j * 2] } return c } /** * Given the maze, the x and y coordinates (which must be odd), * and the direction we came from, return true if the maze is * solvable, and draw the solution if so. */ fun solveMazeRecursively(maze: Maze, x: Int, y: Int, d: Int): Boolean { var ok = false var i = 0 while (i < 4 && !ok) { if (i != d) { // 0 = up, 1 = right, 2 = down, 3 = left when(i) { 0 -> if (maze[y - 1][x] == ' ') ok = solveMazeRecursively (maze, x, y - 2, 2) 1 -> if (maze[y][x + 1] == ' ') ok = solveMazeRecursively (maze, x + 2, y, 3) 2 -> if (maze[y + 1][x] == ' ') ok = solveMazeRecursively (maze, x, y + 2, 0) 3 -> if (maze[y][x - 1] == ' ') ok = solveMazeRecursively (maze, x - 2, y, 1) else -> {} } } i++ } // check for end condition if (x == 1 && y == 1) ok = true // once we have found a solution, draw it as we unwind the recursion if (ok) { maze[y][x] = '*' when (d) { 0 -> maze[y - 1][x] = '*' 1 -> maze[y][x + 1] = '*' 2 -> maze[y + 1][x] = '*' 3 -> maze[y][x - 1] = '*' else -> {} } } return ok } /** * Solve the maze and draw the solution. For simplicity, * assumes the starting point is the lower right, and the * ending point is the upper left. */ fun solveMaze(maze: Maze) = solveMazeRecursively(maze, maze[0].size - 2, maze.size - 2, -1) /** * Opposite of decimateHorizontally(). Adds extra characters to make * the maze "look right", and converts each line from char[] to * String at the same time. */ fun expandHorizontally(maze: Maze): Array { val tmp = CharArray(3) val lines = Array(maze.size) { "" } for (i in 0 until maze.size) { val sb = StringBuilder(maze[i].size * 2) for (j in 0 until maze[i].size) { if (j % 2 == 0) sb.append(maze[i][j]) else { for (k in 0..2) tmp[k] = maze[i][j] if (tmp[1] == '*') { tmp[0] = ' ' tmp[2] = ' ' } sb.append(tmp) } } lines[i] = sb.toString() } return lines } /** * Accepts a maze as generated by: * http://rosettacode.org/wiki/Maze_generation#Kotlin * in a file whose name is specified as a command-line argument. */ fun main(args: Array) { if (args.size != 1) { println("The maze file to be read should be passed as a single command line argument.") return } val f = File(args[0]) if (!f.exists()) { println("Sorry ${args[0]} does not exist.") return } val lines = f.readLines(Charsets.US_ASCII) val maze = decimateHorizontally(lines) solveMaze(maze) val solvedLines = expandHorizontally(maze) println(solvedLines.joinToString("\n")) } ``` {{out}} Maze (maze.txt) produced by the maze generation program: ```txt +---+---+---+---+---+---+---+---+ | | | | +---+---+ + + +---+ + + | | | | | | | + + + +---+ + +---+ + | | | | | | + + + + +---+---+---+ + | | | | | | +---+ + +---+---+---+ + + | | | | | | + +---+ + +---+ + + + | | | | | | + + +---+---+ +---+---+ + | | | | | + +---+ + +---+ + +---+ | | | | +---+---+---+---+---+---+---+---+ ``` Solution generated by this program when passed maze.txt - follow *'s from bottom right (start) to top left (finish): ```txt +---+---+---+---+---+---+---+---+ | * * * * * | * * * * * | | +---+---+ * + + * +---+ * + + | | * | | * | | * * * | + + + * +---+ * + +---+ * + | | | * | * * * | * | + + + * + * +---+---+---+ * + | | | * | * * * * * * * | * | +---+ + * +---+---+---+ * + * + | | * | * * * * * | * | * | + +---+ * + * +---+ * + * + * + | | * * * | * * * | * * * | * | + + * +---+---+ * +---+---+ * + | * * * | * * * | * * * | * * * | + * +---+ * + * +---+ * + * +---+ | * * * * * | * * * * * | * * * | +---+---+---+---+---+---+---+---+ ``` ## Mathematica ### Graph Solving the maze generated in [[Maze_generation#Graph]]: ```mathematica HighlightGraph[maze, PathGraph@FindShortestPath[maze, 1, 273]] ``` {{Out}} [[File:MathematicaMazeGraphSolving.png]] ## Perl This example includes maze generation code. ```perl #!perl use strict; use warnings; my ($width, $height) = @ARGV; $_ ||= 10 for $width, $height; my %visited; my $h_barrier = "+" . ("--+" x $width) . "\n"; my $v_barrier = "|" . (" |" x $width) . "\n"; my @output = ($h_barrier, $v_barrier) x $height; push @output, $h_barrier; my @dx = qw(-1 1 0 0); my @dy = qw(0 0 -1 1); sub visit { my ($x, $y) = @_; $visited{$x, $y} = 1; my $rand = int rand 4; for my $n ( $rand .. 3, 0 .. $rand-1 ) { my ($xx, $yy) = ($x + $dx[$n], $y + $dy[$n]); next if $visited{ $xx, $yy }; next if $xx < 0 or $xx >= $width; next if $yy < 0 or $yy >= $height; my $row = $y * 2 + 1 + $dy[$n]; my $col = $x * 3 + 1 + $dx[$n]; substr( $output[$row], $col, 2, ' ' ); no warnings 'recursion'; visit( $xx, $yy ); } } visit( int rand $width, int rand $height ); print "Here is the maze:\n"; print @output; %visited = (); my @d = ('>>', '<<', 'vv', '^^'); sub solve { my ($x, $y) = @_; return 1 if $x == 0 and $y == 0; $visited{ $x, $y } = 1; my $rand = int rand 4; for my $n ( $rand .. 3, 0 .. $rand-1 ) { my ($xx, $yy) = ($x + $dx[$n], $y + $dy[$n]); next if $visited{ $xx, $yy }; next if $xx < 0 or $xx >= $width; next if $yy < 0 or $yy >= $height; my $row = $y * 2 + 1 + $dy[$n]; my $col = $x * 3 + 1 + $dx[$n]; my $b = substr( $output[$row], $col, 2 ); next if " " ne $b; no warnings 'recursion'; next if not solve( $xx, $yy ); substr( $output[$row], $col, 2, $d[$n] ); substr( $output[$row-$dy[$n]], $col-$dx[$n], 2, $d[$n] ); return 1; } 0; } if( solve( $width-1, $height-1 ) ) { print "Here is the solution:\n"; substr( $output[1], 1, 2, '**' ); print @output; } else { print "Could not solve!\n"; } ``` {{out}} ```txt Here is the maze: +--+--+--+--+--+--+--+--+--+--+ | | | | + + +--+--+--+ +--+ + + + | | | | | | + +--+--+ + + +--+--+--+ + | | | | | | +--+--+--+--+ +--+ +--+ + + | | | | | | + + +--+ + + +--+ +--+ + | | | | | | | | +--+--+ +--+ + + +--+ +--+ | | | | | | | + +--+--+ +--+--+ + +--+ + | | | | | | + + + + + +--+--+--+--+--+ | | | | | | | + + +--+--+ + + + +--+ + | | | | | | | + + + + +--+--+--+--+--+ + | | | +--+--+--+--+--+--+--+--+--+--+ Here is the solution: +--+--+--+--+--+--+--+--+--+--+ |**| | | +vv+ +--+--+--+ +--+ + + + |vv | ^^>>>| | | | +vv+--+--+^^+vv+ +--+--+--+ + |vv>>>>>>>>>|vv| | | | +--+--+--+--+vv+--+ +--+ + + | |vv| | | | + + +--+ +vv+ +--+ +--+ + | | | |vv| | | | +--+--+ +--+vv+ + +--+ +--+ | |<<>>| | | | + +vv+^^+vv+--+--+--+--+--+ + | vv>>>|vv>>>>>>>>>>>>>>>>>>| +--+--+--+--+--+--+--+--+--+--+ ``` ## Perl 6 {{works with|Rakudo|2017.02}} (Includes maze generation code.) ```perl6 constant mapping = :OPEN(' '), :N< ╵ >, :E< ╶ >, :NE< └ >, :S< ╷ >, :NS< │ >, :ES< ┌ >, :NES< ├ >, :W< ╴ >, :NW< ┘ >, :EW< ─ >, :NEW< ┴ >, :SW< ┐ >, :NSW< ┤ >, :ESW< ┬ >, :NESW< ┼ >, :TODO< x >, :TRIED< · >; enum Sym (mapping.map: *.key); my @ch = mapping.map: *.value; enum Direction ; sub gen_maze ( $X, $Y, $start_x = (^$X).pick * 2 + 1, $start_y = (^$Y).pick * 2 + 1 ) { my @maze; push @maze, $[ flat ES, -N, (ESW, EW) xx $X - 1, SW ]; push @maze, $[ flat (NS, TODO) xx $X, NS ]; for 1 ..^ $Y { push @maze, $[ flat NES, EW, (NESW, EW) xx $X - 1, NSW ]; push @maze, $[ flat (NS, TODO) xx $X, NS ]; } push @maze, $[ flat NE, (EW, NEW) xx $X - 1, -NS, NW ]; @maze[$start_y][$start_x] = OPEN; my @stack; my $current = [$start_x, $start_y]; loop { if my $dir = pick_direction( $current ) { @stack.push: $current; $current = move( $dir, $current ); } else { last unless @stack; $current = @stack.pop; } } return @maze; sub pick_direction([$x,$y]) { my @neighbors = (Up if @maze[$y - 2][$x]), (Down if @maze[$y + 2][$x]), (Left if @maze[$y][$x - 2]), (Right if @maze[$y][$x + 2]); @neighbors.pick or DeadEnd; } sub move ($dir, @cur) { my ($x,$y) = @cur; given $dir { when Up { @maze[--$y][$x] = OPEN; @maze[$y][$x-1] -= E; @maze[$y--][$x+1] -= W; } when Down { @maze[++$y][$x] = OPEN; @maze[$y][$x-1] -= E; @maze[$y++][$x+1] -= W; } when Left { @maze[$y][--$x] = OPEN; @maze[$y-1][$x] -= S; @maze[$y+1][$x--] -= N; } when Right { @maze[$y][++$x] = OPEN; @maze[$y-1][$x] -= S; @maze[$y+1][$x++] -= N; } } @maze[$y][$x] = 0; [$x,$y]; } } sub display (@maze) { for @maze -> @y { for @y.rotor(2) -> ($w, $c) { print @ch[abs $w]; if $c >= 0 { print @ch[$c] x 3 } else { print ' ', @ch[abs $c], ' ' } } say @ch[@y[*-1]]; } } sub solve (@maze is copy, @from = [1, 1], @to = [@maze[0] - 2, @maze - 2]) { my ($x, $y) = @from; my ($xto, $yto) = @to; my @stack; sub drop-crumb($x,$y,$c) { @maze[$y][$x] = -$c } drop-crumb($x,$y,N); loop { my $dir = pick_direction([$x,$y]); if $dir { ($x, $y) = move($dir, [$x,$y]); return @maze if $x == $xto and $y == $yto; } else { @maze[$y][$x] = -TRIED; ($x,$y) = @stack.pop; @maze[$y][$x] = -TRIED; ($x,$y) = @stack.pop; } } sub pick_direction([$x,$y]) { my @neighbors = (Up unless @maze[$y - 1][$x]), (Down unless @maze[$y + 1][$x]), (Left unless @maze[$y][$x - 1]), (Right unless @maze[$y][$x + 1]); @neighbors.pick or DeadEnd; } sub move ($dir, @cur) { my ($x,$y) = @cur; given $dir { when Up { for ^2 { push @stack, $[$x,$y--]; drop-crumb $x,$y,S; } } when Down { for ^2 { push @stack, $[$x,$y++]; drop-crumb $x,$y,N; } } when Left { for ^2 { push @stack, $[$x--,$y]; drop-crumb $x,$y,E; } } when Right { for ^2 { push @stack, $[$x++,$y]; drop-crumb $x,$y,W; } } } $x,$y; } } display solve gen_maze( 29, 19 ); ``` {{out}} ```txt ┌ ╵ ────┬───────────────┬───────────────┬───────────────────────────────┬───────────┬───────────────┬───────────────┐ │ ╵ · · │ ╷ ╴ ╴ ╴ ╴ │ │ ╷ ╴ ╴ · · · · · · · · · · · · │ ╷ ╴ ╴ · · │ · · · · · · · │ · · · · · · · │ │ ╵ ╶───┘ ╷ ╶───┐ ╵ ╷ │ ╷ ╶───────┤ ╷ ╷ ╵ ╶───────┬───────┐ · ┌───┘ ╷ ╷ ╵ ╷ · │ · ╶───┬───╴ · │ · ╷ · ┌───╴ · │ │ ╵ ╴ ╴ ╴ ╴ · · │ ╵ │ │ │ │ ╷ │ ╵ ╴ ╴ ╴ ╴ │ ╷ ╴ ╴ │ · │ ╷ ╴ ╴ │ ╵ │ · │ · · · │ · · · │ · │ · │ · · · │ │ · ┌───────────┤ ╵ │ └───┴───────╴ │ ╷ ├───────┐ ╵ ╵ ╷ ╷ ╵ └───┘ ╷ ┌───┘ ╵ │ · │ · ╷ · │ · ┌───┴───┘ · │ · ╶───┤ │ · │ ╶ ╶ ╶ ╶ ╷ │ ╵ │ │ ╷ │ │ ╵ ╴ ╴ │ ╵ ╴ ╴ ╴ ╴ │ ╶ ╶ ╵ │ · │ · │ · │ · │ · · · · · │ · · · │ │ · │ ╵ ╶───┐ ╷ ╵ ╵ ├───────────────╴ │ ╷ └───╴ └───────┼───┬───────┤ ╵ ┌───┤ · ├───┘ · │ · │ · ╷ · ┌───┴───┐ · │ │ · │ ╵ ╴ ╴ │ ╶ ╶ ╵ │ │ ╶ ╶ ╶ ╶ ╶ ╶ ╶ ╶ ╷ │ · │ ╶ ╶ ╷ │ ╵ │ · │ · │ · · · │ · │ · │ · │ · · · │ · │ │ · └───┐ ╵ ├───────┴───────┐ ╶───────┴───────┬───────╴ ╷ │ · │ ╵ ╷ ╷ │ ╵ │ · │ · │ · ┌───┤ · │ · │ · │ · ╷ · ╵ · │ │ · · · │ ╵ │ ╷ ╴ ╴ ╴ ╴ ╴ ╴ │ │ ╷ ╴ ╴ ╴ ╴ │ · │ ╵ │ ╷ │ ╵ │ · │ · │ · │ · │ · │ · │ · │ · │ · · · │ ├───╴ · │ ╵ │ ╷ ╶───────┐ ╵ ├───────────────┐ │ ╷ ╶───┬───┘ · │ ╵ │ ╷ ╵ ╵ │ · ╵ · ╵ · │ · ╵ · └───┘ · │ · ├───────┤ │ · · · │ ╵ │ ╶ ╶ ╶ ╶ ╷ │ ╵ │ ╷ ╴ ╴ ╴ ╴ ╴ ╴ │ │ ╶ ╶ ╷ │ · · · │ ╵ │ ╶ ╶ ╵ │ · · · · · │ · · · · · · · │ · │ · · · │ │ · ┌───┤ ╵ └───────╴ ╷ │ ╵ ╵ ╷ ┌───────┐ ╵ │ └───┐ ╷ └───┐ · │ ╵ ├───────┼───────┬───┴───────┬───┬───┘ · ├───╴ · │ │ · │ · │ ╵ ╴ ╴ ╴ ╴ ╴ ╴ │ ╵ ╴ ╴ │ · · · │ ╵ │ │ ╶ ╶ ╷ │ · │ ╵ │ ╷ ╴ ╴ │ ╷ ╴ ╴ │ ╷ ╴ ╴ ╴ ╴ │ · │ · · · │ · · · │ │ · ╵ · ├───────────────┴───────┴───┐ · │ ╵ └───────┴───┐ ╷ │ · │ ╵ ╵ ╷ ╷ ╵ ╵ ╷ ╷ ╵ │ ╷ ┌───╴ ╵ │ · │ · ╶───┤ · ╶───┤ │ · · · │ · · · · · · · · · · · · · │ · │ ╵ ╴ ╴ ╴ ╴ · · │ ╷ │ · │ ╵ ╴ ╴ │ ╵ ╴ ╴ │ ╵ │ ╷ │ ╶ ╶ ╵ │ · │ · · · │ · · · │ ├───┐ · │ · ┌───────────╴ · ┌───┐ · │ · └───┬───╴ ╵ ┌───┘ ╷ │ · ├───────┴───────┤ ╵ ╵ ╷ │ ╵ ╶───┤ · └───┐ · │ · ╷ · │ │ · │ · │ · │ · · · · · · · │ · │ · │ · · · │ ╶ ╶ ╵ │ ╷ ╴ ╴ │ · │ · · · · · · · │ ╵ ╴ ╴ │ ╵ ╴ ╴ │ · · · │ · │ · │ · │ │ · │ · └───┘ · ┌───────────┘ · │ · ├───╴ · │ ╵ ┌───┘ ╷ ┌───┘ · │ · ╷ · ┌───╴ · └───────┴───┐ ╵ └───┐ · ╵ · ├───┘ · │ │ · │ · · · · · │ · · · · · · · │ · │ · · · │ ╵ │ ╷ ╴ ╴ │ · · · │ · │ · │ · · · · · · · · · │ ╵ ╴ ╴ │ · · · │ · · · │ │ · ├───────╴ · ├───┐ · ┌───┐ · ╵ · │ · ╶───┤ ╵ ╵ ╷ ┌───┘ · ╶───┤ · │ · └───┬───╴ · ┌───────┤ · ╷ ╵ │ · ╶───┘ · ╷ · │ │ · │ · · · · · │ │ · │ · │ · · · │ · · · │ ╵ ╴ ╴ │ · · · · · │ · │ · · · │ · · · │ ╶ ╶ ╷ │ · │ ╵ │ · · · · · │ · │ │ · ╵ · ┌───────┘ │ · ╵ · └───────┤ · ╷ · └───────┴───────┐ · ╵ · └───┐ · └───┐ · │ ╵ ╷ ╷ └───┘ ╵ ├───────────┤ · │ │ · · · │ │ · · · · · · · │ · │ · · · · · · · · · │ · · · · · │ · · · │ · │ ╵ │ ╶ ╶ ╶ ╶ ╵ │ ╷ ╴ ╴ ╴ ╴ │ · │ │ · ╶───┤ ╶───────┴───┬───────┐ · ├───┘ · ┌───────────┐ · ├───────────┴───╴ · │ · │ ╵ └───────┐ · │ ╷ ┌───╴ ╵ │ · │ │ · · · │ │ · · · │ · │ · · · │ · · · · · │ · │ · · · · · · · · · │ · │ ╵ ╴ ╴ ╴ ╴ │ · │ ╷ │ ╶ ╶ ╵ │ · │ ├───┐ · ├───────┬───╴ │ · ╷ · │ · │ · ┌───┤ · ╶───────┤ · │ · ╶───────┬───┐ · ├───┴───────┐ ╵ └───┘ ╷ │ ╵ ┌───┴───┤ │ · │ · │ │ │ · │ · │ · │ · │ · │ · · · · · │ · │ · · · · · │ · │ · │ │ ╵ ╴ ╴ ╴ ╴ │ ╵ │ ╷ ╴ ╴ │ │ · │ · │ ╷ ╵ ┌───┘ · │ · ╵ · ╵ · │ · ╵ · ┌───┐ · ╵ · └───────╴ · │ · ╵ · │ ┌───╴ └───────┐ · │ ╵ ╵ ╷ ╷ ╵ │ │ · │ · │ │ │ · · · │ · · · · · │ · · · │ · │ · · · · · · · · · │ · · · │ │ │ · │ ╵ ╴ ╴ │ ╵ │ │ · │ · │ └───┬───┴───────┴───┬───────┤ · ┌───┘ · ├───────────────────┴───────┤ └───────────┐ └───┴───────┤ ╵ │ │ · │ · │ │ │ │ · │ · · · │ │ │ │ ╵ │ │ · ╵ · ├───┐ │ ╶───────┐ ╵ ╷ │ · ╵ · ╷ · │ ╶───────────────────┐ └───┬───────┐ └───────┬───┐ │ ╵ │ │ · · · │ · │ │ │ │ │ · · · │ · │ │ │ │ │ │ │ ╵ │ │ · ╶───┤ · │ └───────┐ ├───────┤ └───┬───┴───┼───────────┬───────┐ ├───┐ ╵ ╷ ├───────┐ │ │ │ ╵ │ │ · · · │ · │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ╵ │ ├───╴ · ╵ · └───────┐ ╵ │ ╷ └───╴ ╵ ╷ ╵ ┌───╴ ╵ ╷ ╵ │ └───────┘ ╵ ╷ ╵ │ ╵ ╵ ╵ │ │ · · · · · · · · · │ │ │ │ │ │ │ │ │ ╵ │ └───────────────────┴───────┴───┴───────────────┴───────┴───────────┴───────┴───────────────────┴───────┴──────── │ ┘ ``` ## Phix Combined generator and solver. ```Phix -- demo\rosetta\Maze_solving.exw constant w = 11, h = 8 sequence wall = join(repeat("+",w+1),"---")&"\n", cell = join(repeat("|",w+1)," ? ")&"\n", grid = split(join(repeat(wall,h+1),cell),'\n') procedure amaze(integer x, integer y) grid[y][x] = ' ' -- mark cell visited sequence p = shuffle({{x-4,y},{x,y+2},{x+4,y},{x,y-2}}) for i=1 to length(p) do integer {nx,ny} = p[i] if nx>1 and nx1 and ny<=2*h and grid[ny][nx]='?' then integer mx = (x+nx)/2 grid[(y+ny)/2][mx-1..mx+1] = ' ' -- knock down wall amaze(nx,ny) end if end for end procedure integer dx,dy -- door location (in a wall!) function solve_maze(integer x, y) sequence p = {{x-4,y},{x,y+2},{x+4,y},{x,y-2}} for d=1 to length(p) do integer {nx,ny} = p[d] integer {wx,wy} = {(x+nx)/2,(y+ny)/2} if grid[wy][wx]=' ' then grid[wy][wx] = "-:-:"[d] -- mark path if {wx,wy}={dx,dy} then return true end if if grid[ny][nx]=' ' then grid[ny][nx] = 'o' -- mark cell if solve_maze(nx,ny) then return true end if grid[ny][nx] = ' ' -- unmark cell end if grid[wy][wx] = ' ' -- unmark path end if end for return false end function function heads() return rand(2)=1 -- toin coss 50:50 true(1)/false(0) end function integer {x,y} = {(rand(w)*4)-1,rand(h)*2} amaze(x,y) -- mark start pos grid[y][x] = '*' -- add a random door (heads=rhs/lhs, tails=top/btm) if heads() then {dy,dx} = {rand(h)*2,heads()*w*4+1} grid[dy][dx] = ' ' else {dy,dx} = {heads()*h*2+1,rand(w)*4-1} grid[dy][dx-1..dx+1] = ' ' end if {} = solve_maze(x,y) puts(1,join(grid,'\n')) ``` {{out}} ```txt +---+---+---+---+---+---+---+---+---+---+---+ | o - o - o | o - o - o - o | | | + : +---+ : +---+ : +---+---+ : + + + + | o - o | o | o - o | | o - o | | | +---+ : + : + : +---+ + : +---+---+---+ + | o - o | o - o | | o - o | o - o - o | + : +---+---+---+ +---+---+ : + : +---+ : + | o | | o - o | | o | + : + +---+---+---+---+ +---+---+ + : + | o | | | | o - + : +---+---+ + + +---+---+ +---+---+ | o | | | | + : +---+---+---+ +---+ +---+---+ + + | o - o - o | | * | | | | + +---+ : +---+---+ : + +---+---+ + + | | o - o - o - o | | | +---+---+---+---+---+---+---+---+---+---+---+ ``` ## PicoLisp ```PicoLisp (de shortestPath (Goal This Maze) (let (Path NIL Best NIL Dir " > ") (recur (This Path Dir) (when (and This (not (: mark))) (push 'Path (cons This Dir)) (if (== Goal This) (unless (and Best (>= (length Path) (length Best))) (setq Best Path) ) (=: mark T) (recurse (: west) Path " > ") (recurse (: east) Path " < ") (recurse (: south) Path " \^ ") (recurse (: north) Path " v ") (=: mark NIL) ) ) ) (disp Maze 0 '((Fld) (if (asoq Fld Best) (cdr @) " ")) ) ) ) ``` Using the maze produced in [[Maze generation#PicoLisp]], this finds the shortest path from the top-left cell 'a8' to the bottom-right exit 'k1': ```txt : (shortestPath 'a8 'k1 (maze 11 8)) + +---+---+---+---+---+---+---+---+---+---+ 8 | > > v | > v | | + + + + + + +---+ +---+---+ + 7 | | | > ^ | v | | | | | +---+ +---+---+ + + +---+ + + + 6 | | | v | | | | | + +---+ +---+ +---+---+---+ + +---+ 5 | | | > > > v | | | +---+ +---+ +---+---+---+ +---+---+ + 4 | | | | | v | > > v | + +---+ +---+ +---+ + + +---+ + 3 | | | | | v | ^ < | v | + +---+---+ + + + + +---+ + + 2 | | | | | | v | > ^ | v | + + + +---+ + +---+ + +---+ + 1 | | | > ^ | > +---+---+---+---+---+---+---+---+---+---+---+ a b c d e f g h i j k ``` ## Prolog Works with SWI-Prolog and XPCE. ```Prolog :- dynamic cell/2. :- dynamic maze/3. :- dynamic path/1. maze_solve(Lig,Col) :- retractall(cell(_,_)), retractall(maze(_,_,_)), retractall(path(_)), % initialisation of the neighbours of the cells forall(between(0, Lig, I), ( forall(between(0, Col, J), assert(maze(I, J, []))))), % creation of the window of the maze new(D, window('Maze')), forall(between(0,Lig, I), (XL is 50, YL is I * 30 + 50, XR is Col * 30 + 50, new(L, line(XL, YL, XR, YL)), send(D, display, L))), forall(between(0,Col, I), (XT is 50 + I * 30, YT is 50, YB is Lig * 30 + 50, new(L, line(XT, YT, XT, YB)), send(D, display, L))), SX is Col * 30 + 100, SY is Lig * 30 + 100, send(D, size, new(_, size(SX, SY))), L0 is random(Lig), C0 is random(Col), assert(cell(L0, C0)), \+search(D, Lig, Col, L0, C0), send(D, open), % we look for a path from cell(0, 0) to cell(Lig-1, Col-1) % creation of the entrance erase_line(D, -1, 0, 0, 0), % creation of the exit Lig1 is Lig-1, Col1 is Col-1, erase_line(D, Lig1, Col1, Lig, Col1), % seraching the path assert(path([[0, 0], [-1, 0]])), walk(Lig, Col), path(P), display_path(D, P). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% walk(Lig, Col) :- path([[L, C] | _R]), L is Lig - 1, C is Col - 1, retract(path(P)), assert(path([[Lig, C]|P])). walk(Lig, Col) :- retract(path([[L, C] | R])), maze(L, C, Edge), member([L1, C1], Edge), \+member([L1, C1], R), assert(path([[L1,C1], [L, C] | R])), walk(Lig, Col). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% display_path(_, []). display_path(D, [[L, C] | R]):- new(B, box(10,10)), send(B, fill_pattern, new(_, colour(@default, 0,0,0))), X is C * 30 + 60, Y is L * 30 + 60, send(D, display, B, point(X,Y)), display_path(D, R). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% search(D, Lig, Col, L, C) :- Dir is random(4), nextcell(Dir, Lig, Col, L, C, L1, C1), assert(cell(L1,C1)), assert(cur(L1,C1)), retract(maze(L, C, Edge)), assert(maze(L, C, [[L1, C1] | Edge])), retract(maze(L1, C1, Edge1)), assert(maze(L1, C1, [[L, C] | Edge1])), erase_line(D, L, C, L1, C1), search(D, Lig, Col, L1, C1). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% erase_line(D, L, C, L, C1) :- ( C < C1 -> C2 = C1; C2 = C), XT is C2 * 30 + 50, YT is L * 30 + 51, YR is (L+1) * 30 + 50, new(Line, line(XT, YT, XT, YR)), send(Line, colour, white), send(D, display, Line). erase_line(D, L, C, L1, C) :- XT is 51 + C * 30, XR is 50 + (C + 1) * 30, ( L < L1 -> L2 is L1; L2 is L), YT is L2 * 30 + 50, new(Line, line(XT, YT, XR, YT)), send(Line, colour, white), send(D, display, Line). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nextcell(Dir, Lig, Col, L, C, L1, C1) :- next(Dir, Lig, Col, L, C, L1, C1); ( Dir1 is (Dir+3) mod 4, next(Dir1, Lig, Col, L, C, L1, C1)); ( Dir2 is (Dir+1) mod 4, next(Dir2, Lig, Col, L, C, L1, C1)); ( Dir3 is (Dir+2) mod 4, next(Dir3, Lig, Col, L, C, L1, C1)). % 0 => northward next(0, _Lig, _Col, L, C, L1, C) :- L > 0, L1 is L - 1, \+cell(L1, C). % 1 => rightward next(1, _Lig, Col, L, C, L, C1) :- C < Col - 1, C1 is C + 1, \+cell(L, C1). % 2 => southward next(2, Lig, _Col, L, C, L1, C) :- L < Lig - 1, L1 is L + 1, \+cell(L1, C). % 3 => leftward next(2, _Lig, _Col, L, C, L, C1) :- C > 0, C1 is C - 1, \+cell(L, C1). ``` output : [[File:Prolog-Maze-solved.jpg]] ## PureBasic ```PureBasic ;code from the maze generation task is place here in its entirety before the rest of the code Procedure displayMazePath(Array maze(2), List Path.POINT()) Protected x, y, vWall.s, hWall.s Protected mazeWidth = ArraySize(maze(), 1), mazeHeight = ArraySize(maze(), 2) Protected Dim mazeOutput.mazeOutput(mazeHeight) Protected Dim mazeRow.mazeOutput(0) Static pathChars.s = "@^>v<" For y = 0 To mazeHeight makeDisplayMazeRow(mazeRow(), maze(), y): mazeOutput(y) = mazeRow(0) Next If ListSize(path()) FirstElement(path()) Protected prevPath.POINT = path() While NextElement(path()) x = path()\x - prevPath\x y = path()\y - prevPath\y Select x Case -1: dirTaken = #dir_W Case 1: dirTaken = #dir_E Default If y < 0 dirTaken = #dir_N Else dirTaken = #dir_S EndIf EndSelect hWall = mazeOutput(prevPath\y)\hWall mazeOutput(prevPath\y)\hWall = Left(hWall, prevPath\x * #cellDWidth + 2) + Mid(pathChars, dirTaken + 1, 1) + Right(hWall, Len(hWall) - (prevPath\x * #cellDWidth + 3)) prevPath = path() Wend hWall = mazeOutput(prevPath\y)\hWall mazeOutput(prevPath\y)\hWall = Left(hWall, prevPath\x * #cellDWidth + 2) + Mid(pathChars, #dir_ID + 1, 1) + Right(hWall, Len(hWall) - (prevPath\x * #cellDWidth + 3)) For y = 0 To mazeHeight PrintN(mazeOutput(y)\vWall): PrintN(mazeOutput(y)\hWall) Next EndIf EndProcedure Procedure solveMaze(Array maze(2), *start.POINT, *finish.POINT, List Path.POINT()) Protected mazeWidth = ArraySize(maze(), 1), mazeHeight = ArraySize(maze(), 2) Dim visited(mazeWidth + 1, mazeHeight + 1) ;includes padding for easy border detection Protected i ;mark outside border as already visited (off limits) For i = 1 To mazeWidth visited(i, 0) = #True: visited(i, mazeHeight + 1) = #True Next For i = 1 To mazeHeight visited(0, i) = #True: visited(mazeWidth + 1, i) = #True Next Protected x = *start\x, y = *start\y, nextCellDir visited(x + offset(#visited, #dir_ID)\x, y + offset(#visited, #dir_ID)\y) = #True ClearList(path()) Repeat If x = *finish\x And y = *finish\y AddElement(path()) path()\x = x: path()\y = y Break ;success EndIf nextCellDir = #firstDir - 1 For i = #firstDir To #numDirs If Not visited(x + offset(#visited, i)\x, y + offset(#visited, i)\y) If maze(x + offset(#wall, i)\x, y + offset(#wall, i)\y) & wallvalue(i) <> #Null nextCellDir = i: Break ;exit for/next search EndIf EndIf Next If nextCellDir >= #firstDir visited(x + offset(#visited, nextCellDir)\x, y + offset(#visited, nextCellDir)\y) = #True AddElement(path()) path()\x = x: path()\y = y x + offset(#maze, nextCellDir)\x: y + offset(#maze, nextCellDir)\y ElseIf ListSize(path()) > 0 x = path()\x: y = path()\y DeleteElement(path()) Else Break EndIf ForEver EndProcedure ;demonstration If OpenConsole() Define.POINT start, finish start\x = Random(mazeWidth - 1): start\y = Random(mazeHeight - 1) finish\x = Random(mazeWidth - 1): finish\y = Random(mazeHeight - 1) NewList Path.POINT() solveMaze(maze(), start, finish, path()) If ListSize(path()) > 0 PrintN("Solution found for path between (" + Str(start\x) + ", " + Str(start\y) + ") and (" + Str(finish\x) + ", " + Str(finish\y) + ")") displayMazePath(maze(), path()) Else PrintN("No solution found for path between (" + Str(start\x) + ", " + Str(start\y) + ") and (" + Str(finish\x) + ", " + Str(finish\y) + ")") EndIf Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input() CloseConsole() EndIf ``` Using the maze produced in [[Maze generation#PureBasic]], this additional code will find and display the path between two random maze cells. A working example requires combining the two code listings by placing the 'maze generation' code at the beginning of the 'maze solving' code. Sample output: ```txt Solution found for path between (3, 2) and (7, 1) +---+---+---+---+---+---+---+---+---+---+ | v < < < < | | v < < | + +---+---+---+ + + +---+ +---+ | > v | ^ | | v | @ | ^ < | +---+ +---+---+ + + + +---+ + | | v | > ^ | v | ^ | ^ | + + + +---+---+---+ + +---+ + | v < | | > ^ | > ^ | + +---+---+---+---+ +---+ + + + | v | | | | ^ | | + +---+ + +---+---+---+---+ +---+ | > > v | | > v | ^ < | +---+---+ +---+---+---+ + +---+ + | > > > > ^ | > > ^ | +---+---+---+---+---+---+---+---+---+---+ ``` ## Python ```Python # python 3 def Dijkstra(Graph, source): ''' + +---+---+ | 0 1 2 | +---+ + + | 3 4 | 5 +---+---+---+ >>> graph = ( # or ones on the diagonal ... (0,1,0,0,0,0,), ... (1,0,1,0,1,0,), ... (0,1,0,0,0,1,), ... (0,0,0,0,1,0,), ... (0,1,0,1,0,0,), ... (0,0,1,0,0,0,), ... ) ... >>> Dijkstra(graph, 0) ([0, 1, 2, 3, 2, 3], [1e+140, 0, 1, 4, 1, 2]) >>> display_solution([1e+140, 0, 1, 4, 1, 2]) 5<2<1<0 ''' # Graph[u][v] is the weight from u to v (however 0 means infinity) infinity = float('infinity') n = len(graph) dist = [infinity]*n # Unknown distance function from source to v previous = [infinity]*n # Previous node in optimal path from source dist[source] = 0 # Distance from source to source Q = list(range(n)) # All nodes in the graph are unoptimized - thus are in Q while Q: # The main loop u = min(Q, key=lambda n:dist[n]) # vertex in Q with smallest dist[] Q.remove(u) if dist[u] == infinity: break # all remaining vertices are inaccessible from source for v in range(n): # each neighbor v of u if Graph[u][v] and (v in Q): # where v has not yet been visited alt = dist[u] + Graph[u][v] if alt < dist[v]: # Relax (u,v,a) dist[v] = alt previous[v] = u return dist,previous def display_solution(predecessor): cell = len(predecessor)-1 while cell: print(cell,end='<') cell = predecessor[cell] print(0) ``` ## Racket Following function returns a path between two cells in a maze which is created by the build-maze function (See [[Maze_generation#Racket|Maze generation]]). ```racket ;; Returns a path connecting two given cells in the maze ;; find-path :: Maze Cell Cell -> (Listof Cell) (define (find-path m p1 p2) (match-define (maze N M tbl) m) (define (alternatives p prev) (remove prev (connections tbl p))) (define (dead-end? p prev) (empty? (alternatives p prev))) (define ((next-turn route) p) (define prev (car route)) (cond [(equal? p p2) (cons p2 route)] [(dead-end? p prev) '()] [else (append-map (next-turn (cons p route)) (alternatives p prev))])) (reverse (append-map (next-turn (list p1)) (alternatives p1 (list p1))))) ``` Reading a maze from a file ```racket ;; Reads the maze from the textual form ;; read-maze :: File-path -> Maze (define (read-maze file) (define tbl (make-hash)) (with-input-from-file file (λ () ; the first line gives us the width of the maze (define N (/ (- (string-length (read-line)) 1) 4)) ; while reading other lines we get the height of the maze (define M (for/sum ([h (in-lines)] [v (in-lines)] [j (in-naturals)]) (for ([i (in-range N)]) (when (eq? #\space (string-ref h (* 4 (+ 1 i)))) (connect! tbl (list i j) (list (+ i 1) j))) (when (eq? #\space (string-ref v (+ 1 (* 4 i)))) (connect! tbl (list i j) (list i (+ j 1))))) 1)) (maze N M tbl)))) ``` Printing out a maze with a path between two given cells ```racket ;; Shows a maze with a path connecting two given cells (define (show-path m p1 p2) (match-define (maze N M tbl) m) (define route (find-path m p1 p2)) (for ([i N]) (display "+---")) (displayln "+") (for ([j M]) (display "|") (for ([i (- N 0)]) (if (member (list i j) route) (display " *") (display " ")) (if (connected? tbl (list i j) (list (+ 1 i) j)) (display " ") (display " |"))) (newline) (for ([i N]) (if (connected? tbl (list i j) (list i (+ j 1))) (display "+ ") (display "+---"))) (displayln "+")) (newline)) ``` Example: ```txt -> (define m (build-maze 14 7)) -> (with-output-to-file "maze" (λ () (show-maze m))) -> (show-maze (read-maze "maze")) +---+---+---+---+---+---+---+---+---+---+---+---+---+---+ | | | | | + +---+---+---+---+ + + + +---+ +---+ + + | | | | | | | | | | +---+ + +---+ +---+ + + + +---+ +---+ + | | | | | | | | | | + + + + +---+---+---+ + + + + + +---+ | | | | | | | | | | + +---+ + + + +---+---+ + +---+---+---+ + | | | | | | | | | | + + +---+---+ +---+---+ + +---+---+ + + + | | | | | | | | + +---+---+---+ + + +---+---+---+ +---+---+ + | | | | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+ -> (show-path m '(0 0) '(13 6)) +---+---+---+---+---+---+---+---+---+---+---+---+---+---+ | * | * * * | | | + +---+---+---+---+ + + + +---+ +---+ + + | * * | * * * | | * | | * | | | | +---+ + +---+ +---+ + + + +---+ +---+ + | * * | * | | * * * | | * | | | | + + + + +---+---+---+ + + + + + +---+ | * | | * | | | * | | | | + +---+ + + + +---+---+ + +---+---+---+ + | * | * * | | | | * | | | | + + +---+---+ +---+---+ + +---+---+ + + + | * | * * * * | | | * * * | | | + +---+---+---+ + + +---+---+---+ +---+---+ + | * * * * * | | * * * * | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ``` ## Ruby This solution extends the [[Maze generation#Ruby|maze generator script]]. To get a working script, copy & paste both parts into one file. ```ruby class Maze # Solve via breadth-first algorithm. # Each queue entry is a path, that is list of coordinates with the # last coordinate being the one that shall be visited next. def solve # Clean up. reset_visiting_state # Enqueue start position. @queue = [] enqueue_cell([], @start_x, @start_y) # Loop as long as there are cells to visit and no solution has # been found yet. path = nil until path || @queue.empty? path = solve_visit_cell end if path # Mark the cells that make up the shortest path. for x, y in path @path[x][y] = true end else puts "No solution found?!" end end private # Maze solving visiting method. def solve_visit_cell # Get the next path. path = @queue.shift # The cell to visit is the last entry in the path. x, y = path.last # Have we reached the end yet? return path if x == @end_x && y == @end_y # Mark cell as visited. @visited[x][y] = true for dx, dy in DIRECTIONS if dx.nonzero? # Left / Right new_x = x + dx if move_valid?(new_x, y) && !@vertical_walls[ [x, new_x].min ][y] enqueue_cell(path, new_x, y) end else # Top / Bottom new_y = y + dy if move_valid?(x, new_y) && !@horizontal_walls[x][ [y, new_y].min ] enqueue_cell(path, x, new_y) end end end nil # No solution yet. end # Enqueue a new coordinate to visit. def enqueue_cell(path, x, y) # Add new coordinates to the current path and enqueue the new path. @queue << path + [[x, y]] end end # Demonstration: maze = Maze.new 20, 10 maze.solve maze.print ``` Example output: ```txt +---+---+---+---+---+ +---+---+---+---+---+---+---+---+---+---+---+---+---+---+ | * * | * | | * * | | | | + + +---+---+---+ + + +---+---+ + + + +---+ + +---+ +---+ | * | * * * * * | | * | * | | | | + +---+---+---+---+---+---+---+---+---+ + +---+---+ +---+---+---+---+ + | * | * * | * * * | * * | | | | + + +---+---+---+---+ + + +---+---+---+ + + + +---+---+---+ + | * | | * * | * * | * * * * | | | | + +---+---+---+---+ +---+---+---+ +---+---+---+ +---+---+---+---+ + + | * * * * | * * | | * | | | | | +---+---+---+ + +---+---+ +---+ + +---+---+---+ +---+---+ + + + | | * * | | * * | | | | | | | + + +---+---+---+ +---+---+ +---+ + +---+ + +---+---+---+ +---+ | | | * * | * * * | * * | | | | | | +---+ + + + +---+ + +---+ +---+---+ +---+ + +---+ +---+ + | | * | * * | * * | * * | | | | | | | | + + + +---+---+ +---+---+ +---+ + +---+---+ + + + + + + | | | * | | * | * * * | | | | | | | | + +---+ +---+ + + +---+---+ +---+---+---+ +---+ + +---+---+ + | * * | * * | | | +---+ +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ``` ## Rust This solution reuses the [[Maze generation#Rust|maze generator Rust code]]. The modified and new parts are marked with the label "MAZE SOLVING".Uses the [https://crates.io/crates/rand rand] library. ```rust use rand::{thread_rng, Rng, rngs::ThreadRng}; const WIDTH: usize = 16; const HEIGHT: usize = 16; #[derive(Clone, Copy, PartialEq)] struct Cell { col: usize, row: usize, } impl Cell { fn from(col: usize, row: usize) -> Cell { Cell {col, row} } } struct Maze { cells: [[bool; HEIGHT]; WIDTH], //cell visited/non visited walls_h: [[bool; WIDTH]; HEIGHT + 1], //horizontal walls existing/removed walls_v: [[bool; WIDTH + 1]; HEIGHT], //vertical walls existing/removed thread_rng: ThreadRng, //Random numbers generator } impl Maze { ///Inits the maze, with all the cells unvisited and all the walls active fn new() -> Maze { Maze { cells: [[true; HEIGHT]; WIDTH], walls_h: [[true; WIDTH]; HEIGHT + 1], walls_v: [[true; WIDTH + 1]; HEIGHT], thread_rng: thread_rng(), } } ///Randomly chooses the starting cell fn first(&mut self) -> Cell { Cell::from(self.thread_rng.gen_range(0, WIDTH), self.thread_rng.gen_range(0, HEIGHT)) } ///Opens the enter and exit doors fn open_doors(&mut self) { let from_top: bool = self.thread_rng.gen(); let limit = if from_top { WIDTH } else { HEIGHT }; let door = self.thread_rng.gen_range(0, limit); let exit = self.thread_rng.gen_range(0, limit); if from_top { self.walls_h[0][door] = false; self.walls_h[HEIGHT][exit] = false; } else { self.walls_v[door][0] = false; self.walls_v[exit][WIDTH] = false; } } ///Removes a wall between the two Cell arguments fn remove_wall(&mut self, cell1: &Cell, cell2: &Cell) { if cell1.row == cell2.row { self.walls_v[cell1.row][if cell1.col > cell2.col { cell1.col } else { cell2.col }] = false; } else { self.walls_h[if cell1.row > cell2.row { cell1.row } else { cell2.row }][cell1.col] = false; }; } ///Returns a random non-visited neighbor of the Cell passed as argument fn neighbor(&mut self, cell: &Cell) -> Option { self.cells[cell.col][cell.row] = false; let mut neighbors = Vec::new(); if cell.col > 0 && self.cells[cell.col - 1][cell.row] { neighbors.push(Cell::from(cell.col - 1, cell.row)); } if cell.row > 0 && self.cells[cell.col][cell.row - 1] { neighbors.push(Cell::from(cell.col, cell.row - 1)); } if cell.col < WIDTH - 1 && self.cells[cell.col + 1][cell.row] { neighbors.push(Cell::from(cell.col + 1, cell.row)); } if cell.row < HEIGHT - 1 && self.cells[cell.col][cell.row + 1] { neighbors.push(Cell::from(cell.col, cell.row + 1)); } if neighbors.is_empty() { None } else { let next = neighbors.get(self.thread_rng.gen_range(0, neighbors.len())).unwrap(); self.remove_wall(cell, next); Some(*next) } } ///Builds the maze (runs the Depth-first search algorithm) fn build(&mut self) { let mut cell_stack: Vec = Vec::new(); let mut next = self.first(); loop { while let Some(cell) = self.neighbor(&next) { cell_stack.push(cell); next = cell; } match cell_stack.pop() { Some(cell) => next = cell, None => break, } } } ///MAZE SOLVING: Find the starting cell of the solution fn solution_first(&self) -> Option { for (i, wall) in self.walls_h[0].iter().enumerate() { if !wall { return Some(Cell::from(i, 0)); } } for (i, wall) in self.walls_v.iter().enumerate() { if !wall[0] { return Some(Cell::from(0, i)); } } None } ///MAZE SOLVING: Find the last cell of the solution fn solution_last(&self) -> Option { for (i, wall) in self.walls_h[HEIGHT].iter().enumerate() { if !wall { return Some(Cell::from(i, HEIGHT - 1)); } } for (i, wall) in self.walls_v.iter().enumerate() { if !wall[WIDTH] { return Some(Cell::from(WIDTH - 1, i)); } } None } ///MAZE SOLVING: Get the next candidate cell fn solution_next(&mut self, cell: &Cell) -> Option { self.cells[cell.col][cell.row] = false; let mut neighbors = Vec::new(); if cell.col > 0 && self.cells[cell.col - 1][cell.row] && !self.walls_v[cell.row][cell.col] { neighbors.push(Cell::from(cell.col - 1, cell.row)); } if cell.row > 0 && self.cells[cell.col][cell.row - 1] && !self.walls_h[cell.row][cell.col] { neighbors.push(Cell::from(cell.col, cell.row - 1)); } if cell.col < WIDTH - 1 && self.cells[cell.col + 1][cell.row] && !self.walls_v[cell.row][cell.col + 1] { neighbors.push(Cell::from(cell.col + 1, cell.row)); } if cell.row < HEIGHT - 1 && self.cells[cell.col][cell.row + 1] && !self.walls_h[cell.row + 1][cell.col] { neighbors.push(Cell::from(cell.col, cell.row + 1)); } if neighbors.is_empty() { None } else { let next = neighbors.get(self.thread_rng.gen_range(0, neighbors.len())).unwrap(); Some(*next) } } ///MAZE SOLVING: solve the maze ///Uses self.cells to store the solution cells (true) fn solve(&mut self) { self.cells = [[true; HEIGHT]; WIDTH]; let mut solution: Vec = Vec::new(); let mut next = self.solution_first().unwrap(); solution.push(next); let last = self.solution_last().unwrap(); 'main: loop { while let Some(cell) = self.solution_next(&next) { solution.push(cell); if cell == last { break 'main; } next = cell; } solution.pop().unwrap(); next = *solution.last().unwrap(); } self.cells = [[false; HEIGHT]; WIDTH]; for cell in solution { self.cells[cell.col][cell.row] = true; } } ///MAZE SOLVING: Ask if cell is part of the solution (cells[col][row] == true) fn is_solution(&self, col: usize, row: usize) -> bool { self.cells[col][row] } ///Displays a wall ///MAZE SOLVING: Leave space for printing '*' if cell is part of the solution /// (only when painting vertical walls) /// // fn paint_wall(h_wall: bool, active: bool) { // if h_wall { // print!("{}", if active { "+---" } else { "+ " }); // } else { // print!("{}", if active { "| " } else { " " }); // } // } fn paint_wall(h_wall: bool, active: bool, with_solution: bool) { if h_wall { print!("{}", if active { "+---" } else { "+ " }); } else { print!("{}{}", if active { "|" } else { " " }, if with_solution { "" } else { " " }); } } ///MAZE SOLVING: Paint * if cell is part of the solution fn paint_solution(is_part: bool) { print!("{}", if is_part { " * " } else {" "}); } ///Displays a final wall for a row fn paint_close_wall(h_wall: bool) { if h_wall { println!("+") } else { println!() } } ///Displays a whole row of walls ///MAZE SOLVING: Displays a whole row of walls and, optionally, the included solution cells. // fn paint_row(&self, h_walls: bool, index: usize) { // let iter = if h_walls { self.walls_h[index].iter() } else { self.walls_v[index].iter() }; // for &wall in iter { // Maze::paint_wall(h_walls, wall); // } // Maze::paint_close_wall(h_walls); // } fn paint_row(&self, h_walls: bool, index: usize, with_solution: bool) { let iter = if h_walls { self.walls_h[index].iter() } else { self.walls_v[index].iter() }; for (col, &wall) in iter.enumerate() { Maze::paint_wall(h_walls, wall, with_solution); if !h_walls && with_solution && col < WIDTH { Maze::paint_solution(self.is_solution(col, index)); } } Maze::paint_close_wall(h_walls); } ///Paints the maze ///MAZE SOLVING: Displaying the solution is an option // fn paint(&self) { // for i in 0 .. HEIGHT { // self.paint_row(true, i); // self.paint_row(false, i); // } // self.paint_row(true, HEIGHT); // } fn paint(&self, with_solution: bool) { for i in 0 .. HEIGHT { self.paint_row(true, i, with_solution); self.paint_row(false, i, with_solution); } self.paint_row(true, HEIGHT, with_solution); } } fn main() { let mut maze = Maze::new(); maze.build(); maze.open_doors(); println!("The maze:"); maze.paint(false); maze.solve(); println!("The maze, solved:"); maze.paint(true); } ``` {{out}} ```txt The maze: +---+---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+ | | | | | + +---+ + + +---+ + +---+---+---+---+---+ + + + | | | | | | | | | +---+---+---+---+ + +---+ + +---+---+ + +---+---+ + | | | | | | | | | + +---+---+ + +---+ + + + + + + +---+---+---+ | | | | | | | | | | + +---+ + + + +---+---+---+---+ + +---+---+---+ + | | | | | | | | | | | +---+ +---+ +---+---+ + +---+ + +---+---+ + + + | | | | | | | | | | | + +---+---+---+---+---+ + + + +---+ + + + + + | | | | | | | | | | + +---+ + +---+ +---+---+ + + +---+ + +---+---+ | | | | | | | | | | | | + + + + + + + +---+---+---+---+ + +---+ + + | | | | | | | | | | +---+ +---+---+ +---+---+ +---+---+ +---+---+ + + + | | | | | | | + + +---+---+---+ +---+ +---+---+---+ + +---+---+---+ | | | | | | | + +---+---+---+ +---+ +---+---+ + +---+---+ +---+ + | | | | | | | | + + + +---+---+ +---+---+ +---+---+---+---+---+ + + | | | | | | | | | + + +---+ +---+---+ +---+---+ + +---+---+ + +---+ | | | | | | | | | + +---+ +---+---+---+---+ +---+ +---+ + +---+---+ + | | | | | | | | +---+ + + + +---+ +---+ +---+ +---+---+---+---+ + | | | | | + +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ The maze, solved: +---+---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+ | | | * * * * * * * * | | + +---+ + + +---+ + +---+---+---+---+---+ + + + | | | * * | | | | | | +---+---+---+---+ + +---+ + +---+---+ + +---+---+ + | * * * * | | * * | | | | | | + +---+---+ + +---+ + + + + + + +---+---+---+ | * * * | * | | * * | | | | | | + +---+ + + + +---+---+---+---+ + +---+---+---+ + | | * * | * | | * * | | | | | | +---+ +---+ +---+---+ + +---+ + +---+---+ + + + | * * | * * * * | | | | | | | | | + +---+---+---+---+---+ + + + +---+ + + + + + | * | | | | | | | | | + +---+ + +---+ +---+---+ + + +---+ + +---+---+ | * | | | | | | | | | | | + + + + + + + +---+---+---+---+ + +---+ + + | * * | | | | | | | | | +---+ +---+---+ +---+---+ +---+---+ +---+---+ + + + | | * | | | | | + + +---+---+---+ +---+ +---+---+---+ + +---+---+---+ | | * * * * | | * * | | * * * | + +---+---+---+ +---+ +---+---+ + +---+---+ +---+ + | * * | * * | | * * | * * * * | | * | + + + +---+---+ +---+---+ +---+---+---+---+---+ + + | * | * | | * * * | * * * | | * * * * | * * | + + +---+ +---+---+ +---+---+ + +---+---+ + +---+ | * | * * | * * * * | | * * | | * * | | + +---+ +---+---+---+---+ +---+ +---+ + +---+---+ + | * * | * | * * | * * * | | * * | | +---+ + + + +---+ +---+ +---+ +---+---+---+---+ + | * * | * * | * * * | * * * | + +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ``` ## Tcl {{works with|Tcl|8.6}} This script assumes that the contents of the [[Maze generation#Tcl|generation task]] have already been sourced. Note that the algorithm implemented here does not assume that the maze is free of circuits, and in the case that there are multiple routes, it finds the shortest one because it is a breadth-first search (by virtue of the queue variable being used as a queue). ```tcl oo::define maze { method solve {} { ### Initialization of visited matrix and location/path queue set visited [lrepeat $x [lrepeat $y 0]] set queue {0 0 {}} ### Loop to do the searching ### while 1 { # Check for running out of path; an error in maze construction if {[llength $queue] == 0} { error "cannot reach finish" } # Visit the next square from the queue set queue [lassign $queue cx cy path] if {[lindex $visited $cx $cy]} continue lset visited $cx $cy 1 lappend path $cx $cy # Check for reaching the goal if {$cx == $x-1 && $cy == $y-1} break # Add the square in each direction to the queue if a move there is legal foreach {dx dy} {0 1 1 0 0 -1 -1 0} { set nx [expr {$cx + $dx}]; set ny [expr {$cy + $dy}] if { $nx >= 0 && $nx < $x && $ny >= 0 && $ny < $y && ($dx && idx($verti, min($cx,$nx), $cy) || $dy && idx($horiz, $cx, min($cy,$ny))) } then { lappend queue $nx $ny $path } } } ### Loop to set up the path rendering ### # (-2,-2) is just a marker that isn't next to the maze at all, so # guaranteeing the use of the last 'else' clause foreach {cx cy} $path {nx ny} [concat [lrange $path 2 end] -2 -2] { if {$nx-$cx == 1} { lset content $cx $cy "v" } elseif {$nx-$cx == -1} { lset content $cx $cy "^" } elseif {$ny-$cy == -1} { lset content $cx $cy "<" } else { lset content $cx $cy ">" } } ### Return the path ### return $path } } # Do the solution (we ignore the returned path here...) m solve # Print it out puts [m view] ``` Example output: ```txt + +---+---+---+---+---+---+---+---+---+---+ | v | | + +---+ +---+---+---+---+---+---+---+ + | v | | > v | > v | | | + + +---+ + + + + + +---+ + | v | > ^ | v | ^ | v | | | | + +---+ +---+ + + + +---+ +---+ | v | > ^ | v < | ^ | v | | | | + + +---+ +---+ + + +---+ + + | > ^ | v < | > ^ | v | | | +---+---+ +---+ +---+ +---+ +---+---+ | v < < | > ^ | v < | > > > v | + +---+---+ +---+ +---+ +---+---+ + | > v | ^ < | > > ^ | | v | +---+ +---+---+ +---+---+---+ + + + | > > > ^ | | > +---+---+---+---+---+---+---+---+---+---+---+ ``` ## zkl This entry parses a maze generated by http://rosettacode.org/wiki/Maze_generation#zkl and chooses random start/end points. Parsing the maze and switching between row major (h,w) and row minor (x,y) makes for some pretty vile code. ```zkl ver,hor:=make_maze(); // see above link for this code fcn munge(a,b){ String(a[0,2],b,a[3,*]) } // "+---" --> "+-*-" fcn solveMaze(ver,hor, a,b, u,v, w,h){ if (a==u and b==v) return(True); sh:=hor[b][a]; sv:=ver[b][a]; hor[b][a]=munge(sh,"*"); ver[b][a]=munge(sv,"*"); // drop breadcrumb foreach dx,dy in (T( T(0,-1),T(1,0),T(0,1),T(-1,0) )){ x:=a+dx; y:=b+dy; hy:=hor[y]; vy:=ver[y]; if ( (0<=x