⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

From [http://en.wikipedia.org/wiki/Modular_multiplicative_inverse Wikipedia]:

In [[wp:modular arithmetic|modular arithmetic]], the '''modular multiplicative inverse''' of an [[integer]] ''a'' [[wp:modular arithmetic|modulo]] ''m'' is an integer ''x'' such that

::$a,x \equiv 1 \pmod\left\{m\right\}.$

Or in other words, such that:

::$\exists k \in\Z,\qquad a, x = 1 + k,m$

It can be shown that such an inverse exists if and only if ''a'' and ''m'' are [[wp:coprime|coprime]], but we will ignore this for this task.

;Task: Either by implementing the algorithm, by using a dedicated library or by using a built-in function in your language, compute the modular inverse of 42 modulo 2017.

## 8th


\ return "extended gcd" of a and b; The result satisfies the equation:
\     a*x + b*y = gcd(a,b)
: n:xgcd \ a b --  gcd x y
dup 0 n:= if
1 swap            \ -- a 1 0
else
tuck n:/mod
-rot recurse
tuck 4 roll
n:* n:neg n:+
then ;

\ Return modular inverse of n modulo mod, or null if it doesn't exist (n and mod
\ not coprime):
: n:invmod \ n mod -- invmod
dup >r
n:xgcd rot 1 n:= not if
2drop null
else
drop dup 0 n:< if r@ n:+ then
then
rdrop ;

42 2017 n:invmod . cr bye



{{out}}


1969




procedure modular_inverse is
-- inv_mod calculates the inverse of a mod n. We should have n>0 and, at the end, the contract is a*Result=1 mod n
-- If this is false then we raise an exception (don't forget the -gnata option when you compile
function inv_mod (a : Integer; n : Positive) return Integer with post=> (a * inv_mod'Result) mod n = 1 is
-- To calculate the inverse we do as if we would calculate the GCD with the Euclid extended algorithm
-- (but we just keep the coefficient on a)
function inverse (a, b, u, v : Integer) return Integer is
(if b=0 then u else inverse (b, a mod b, v, u-(v*a)/b));
begin
return inverse (a, n, 1, 0);
end inv_mod;
begin
-- This will output -48 (which is correct)
Put_Line (inv_mod (42,2017)'img);
-- The further line will raise an exception since the GCD will not be 1
Put_Line (inv_mod (42,77)'img);
exception when others => Put_Line ("The inverse doesn't exist.");
end modular_inverse;



## ALGOL 68


BEGIN
PROC modular inverse = (INT a, m) INT :
BEGIN
PROC extended gcd = (INT x, y) []INT :
CO
Algol 68 allows us to return three INTs in several ways.  A [3]INT
is used here but it could just as well be a STRUCT.
CO
BEGIN
INT v := 1, a := 1, u := 0, b := 0, g := x, w := y;
WHILE w>0
DO
INT q := g % w, t := a - q * u;
a := u; u := t;
t := b - q * v;
b := v; v := t;
t := g - q * w;
g := w; w := t
OD;
a PLUSAB (a < 0 | u | 0);
(a, b, g)
END;
[] INT egcd = extended gcd (a, m);
(egcd[3] > 1 | 0 | egcd[1] MOD m)
END;
printf (($"42 ^ -1 (mod 2017) = ", g(0)$, modular inverse (42, 2017)))
CO
Note that if ϕ(m) is known, then a^-1 = a^(ϕ(m)-1) mod m which
allows an alternative implementation in terms of modular
exponentiation but, in general, this requires the factorization of
m.  If m is prime the factorization is trivial and ϕ(m) = m-1.
2017 is prime which may, or may not, be ironic within the context
of the Rosetta Code conditions.
CO
END



{{out}}

42 ^ -1 (mod 2017) = 1969



## AutoHotkey

Translation of [http://rosettacode.org/wiki/Modular_inverse#C C].

MsgBox, % ModInv(42, 2017)

ModInv(a, b) {
if (b = 1)
return 1
b0 := b, x0 := 0, x1 :=1
while (a > 1) {
q := a // b
, t  := b
, b  := Mod(a, b)
, a  := t
, t  := x0
, x0 := x1 - q * x0
, x1 := t
}
if (x1 < 0)
x1 += b0
return x1
}


{{out}}

1969


## AWK


# syntax: GAWK -f MODULAR_INVERSE.AWK
# converted from C
BEGIN {
printf("%s\n",mod_inv(42,2017))
exit(0)
}
function mod_inv(a,b,  b0,t,q,x0,x1) {
b0 = b
x0 = 0
x1 = 1
if (b == 1) {
return(1)
}
while (a > 1) {
q = int(a / b)
t = b
b = int(a % b)
a = t
t = x0
x0 = x1 - q * x0
x1 = t
}
if (x1 < 0) {
x1 += b0
}
return(x1)
}



{{out}}


1969



## Batch File

Based from C's second implementation

{{trans|Perl}}

@echo off
setlocal enabledelayedexpansion
%== Calls the "function" ==%
call :ModInv 42 2017 result
echo !result!
call :ModInv 40 1 result
echo !result!
call :ModInv 52 -217 result
echo !result!
call :ModInv -486 217 result
echo !result!
call :ModInv 40 2018 result
echo !result!
pause>nul
exit /b 0

%== The "function" ==%
:ModInv
set a=%1
set b=%2

if !b! lss 0 (set /a b=-b)
if !a! lss 0 (set /a a=b - ^(-a %% b^))

set t=0&set nt=1&set r=!b!&set /a nr=a%%b

:while_loop
if !nr! neq 0 (
set /a q=r/nr
set /a tmp=nt
set /a nt=t - ^(q*nt^)
set /a t=tmp

set /a tmp=nr
set /a nr=r - ^(q*nr^)
set /a r=tmp
goto while_loop
)

if !r! gtr 1 (set %3=-1&goto :EOF)
if !t! lss 0 set /a t+=b
set %3=!t!
goto :EOF


{{Out}}

1969
0
96
121
-1


## Bracmat

{{trans|Julia}}

( ( mod-inv
=   a b b0 x0 x1 q
.   !arg:(?a.?b)
& ( !b:1
|   (!b.0.1):(?b0.?x0.?x1)
&   whl
' ( !a:>1
& div$(!a.!b):?q & (!b.mod$(!a.!b)):(?a.?b)
& (!x1+-1*!q*!x0.!x0):(?x0.?x1)
)
& (!x:>0|!x1+!b0)
)
)
& out$(mod-inv$(42.2017))
};


Output

1969


## C

#include <stdio.h>

int mul_inv(int a, int b)
{
int b0 = b, t, q;
int x0 = 0, x1 = 1;
if (b == 1) return 1;
while (a > 1) {
q = a / b;
t = b, b = a % b, a = t;
t = x0, x0 = x1 - q * x0, x1 = t;
}
if (x1 < 0) x1 += b0;
return x1;
}

int main(void) {
printf("%d\n", mul_inv(42, 2017));
return 0;
}


The above method has some problems. Most importantly, when given a pair (a,b) with no solution, it generates an FP exception. When given b=1, it returns 1 which is not a valid result mod 1. When given negative a or b the results are incorrect. The following generates results that should match Pari/GP for numbers in the int range. {{trans|Perl}}

#include <stdio.h>

int mul_inv(int a, int b)
{
int t, nt, r, nr, q, tmp;
if (b < 0) b = -b;
if (a < 0) a = b - (-a % b);
t = 0;  nt = 1;  r = b;  nr = a % b;
while (nr != 0) {
q = r/nr;
tmp = nt;  nt = t - q*nt;  t = tmp;
tmp = nr;  nr = r - q*nr;  r = tmp;
}
if (r > 1) return -1;  /* No inverse */
if (t < 0) t += b;
return t;
}
int main(void) {
printf("%d\n", mul_inv(42, 2017));
printf("%d\n", mul_inv(40, 1));
printf("%d\n", mul_inv(52, -217));  /* Pari semantics for negative modulus */
printf("%d\n", mul_inv(-486, 217));
printf("%d\n", mul_inv(40, 2018));
return 0;
}


{{out}}


1969
0
96
121
-1



## C++

{{trans|C}}

#include <iostream>
using namespace std;

int mul_inv(int a, int b)
{
int b0 = b, t, q;
int x0 = 0, x1 = 1;
if (b == 1) return 1;
while (a > 1) {
q = a / b;
t = b, b = a % b, a = t;
t = x0, x0 = x1 - q * x0, x1 = t;
}
if (x1 < 0) x1 += b0;
return x1;
}

int main(void) {
cout<<mul_inv(42, 2017)<<endl;
return 0;
}



Recursive implementation

#include <iostream>

short ObtainMultiplicativeInverse(int a, int b, int s0 = 1, int s1 = 0)
{
return b==0? s0: ObtainMultiplicativeInverse(b, a%b, s1, s0 - s1*(a/b));
}

int main(int argc, char* argv[])
{
std::cout << ObtainMultiplicativeInverse(42, 2017) << std::endl;
return 0;
}



## C#

public class Program
{
static void Main()
{
System.Console.WriteLine(42.ModInverse(2017));
}
}

public static class IntExtensions
{
public static int ModInverse(this int a, int m)
{
if (m == 1) return 0;
int m0 = m;
(int x, int y) = (1, 0);

while (a > 1) {
int q = a / m;
(a, m) = (m, a % m);
(x, y) = (y, x - q * y);
}
return x < 0 ? x + m0 : x;
}
}


## Clojure

(ns test-p.core
(:require [clojure.math.numeric-tower :as math]))

(defn extended-gcd
"The extended Euclidean algorithm--using Clojure code from RosettaCode for Extended Eucliean
(see http://en.wikipedia.orwiki/Extended_Euclidean_algorithm)
Returns a list containing the GCD and the Bézout coefficients
corresponding to the inputs with the result: gcd followed by bezout coefficients "
[a b]
(cond (zero? a) [(math/abs b) 0 1]
(zero? b) [(math/abs a) 1 0]
:else (loop [s 0
s0 1
t 1
t0 0
r (math/abs b)
r0 (math/abs a)]
(if (zero? r)
[r0 s0 t0]
(let [q (quot r0 r)]
(recur (- s0 (* q s)) s
(- t0 (* q t)) t
(- r0 (* q r)) r))))))

(defn mul_inv
" Get inverse using extended gcd.  Extended GCD returns
gcd followed by bezout coefficients. We want the 1st coefficients
(i.e. second of extend-gcd result).  We compute mod base so result
is between 0..(base-1) "
[a b]
(let [b (if (neg? b) (- b) b)
a (if (neg? a) (- b (mod (- a) b)) a)
egcd (extended-gcd a b)]
(if (= (first egcd) 1)
(mod (second egcd) b)
(str "No inverse since gcd is: " (first egcd)))))

(println (mul_inv 42 2017))
(println (mul_inv 40 1))
(println (mul_inv 52 -217))
(println (mul_inv -486 217))
(println (mul_inv 40 2018))



'''Output:'''


1969
0
96
121
No inverse since gcd is: 2



## Common Lisp


;;
;; Calculates the GCD of a and b based on the Extended Euclidean Algorithm. The function also returns
;; the Bézout coefficients s and t, such that gcd(a, b) = as + bt.
;;
;; The algorithm is described on page http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Iterative_method_2
;;
(defun egcd (a b)
(do ((r (cons b a) (cons (- (cdr r) (* (car r) q)) (car r))) ; (r+1 r) i.e. the latest is first.
(s (cons 0 1) (cons (- (cdr s) (* (car s) q)) (car s))) ; (s+1 s)
(u (cons 1 0) (cons (- (cdr u) (* (car u) q)) (car u))) ; (t+1 t)
(q nil))
((zerop (car r)) (values (cdr r) (cdr s) (cdr u)))       ; exit when r+1 = 0 and return r s t
(setq q (floor (/ (cdr r) (car r))))))                     ; inside loop; calculate the q

;;
;; Calculates the inverse module for a = 1 (mod m).
;;
;; Note: The inverse is only defined when a and m are coprimes, i.e. gcd(a, m) = 1.”
;;
(defun invmod (a m)
(multiple-value-bind (r s k) (egcd a m)
(unless (= 1 r) (error "invmod: Values ~a and ~a are not coprimes." a m))
s))



{{out}}


* (invmod 42 2017)

-48
* (mod -48 2017)

1969



## D

{{trans|C}}

T modInverse(T)(T a, T b) pure nothrow {
if (b == 1)
return 1;
T b0 = b,
x0 = 0,
x1 = 1;

while (a > 1) {
immutable q = a / b;
auto t = b;
b = a % b;
a = t;
t = x0;
x0 = x1 - q * x0;
x1 = t;
}
return (x1 < 0) ? (x1 + b0) : x1;
}

void main() {
import std.stdio;
writeln(modInverse(42, 2017));
}


{{out}}

1969


## EchoLisp


(lib 'math) ;; for egcd = extended gcd

(define (mod-inv x m)
(define-values (g inv q) (egcd x m))
(unless (= 1 g) (error 'not-coprimes (list x m) ))
(if (< inv 0) (+ m inv) inv))

(mod-inv 42 2017)  → 1969
(mod-inv 42 666)
🔴 error: not-coprimes (42 666)



## Elixir

{{trans|Ruby}}

defmodule Modular do
def extended_gcd(a, b) do
{last_remainder, last_x} = extended_gcd(abs(a), abs(b), 1, 0, 0, 1)
{last_remainder, last_x * (if a < 0, do: -1, else: 1)}
end

defp extended_gcd(last_remainder, 0, last_x, _, _, _), do: {last_remainder, last_x}
defp extended_gcd(last_remainder, remainder, last_x, x, last_y, y) do
quotient   = div(last_remainder, remainder)
remainder2 = rem(last_remainder, remainder)
extended_gcd(remainder, remainder2, x, last_x - quotient*x, y, last_y - quotient*y)
end

def inverse(e, et) do
{g, x} = extended_gcd(e, et)
if g != 1, do: raise "The maths are broken!"
rem(x+et, et)
end
end

IO.puts Modular.inverse(42,2017)


{{out}}


1969



## ERRE

PROGRAM MOD_INV

!$INTEGER PROCEDURE MUL_INV(A,B->T) LOCAL NT,R,NR,Q,TMP IF B<0 THEN B=-B IF A<0 THEN A=B-(-A MOD B) T=0 NT=1 R=B NR=A MOD B WHILE NR<>0 DO Q=R DIV NR TMP=NT NT=T-Q*NT T=TMP TMP=NR NR=R-Q*NR R=TMP END WHILE IF (R>1) THEN T=-1 EXIT PROCEDURE ! NO INVERSE IF (T<0) THEN T+=B END PROCEDURE BEGIN MUL_INV(42,2017->T) PRINT(T) MUL_INV(40,1->T) PRINT(T) MUL_INV(52,-217->T) PRINT(T) ! pari semantics for negative modulus MUL_INV(-486,217->T) PRINT(T) MUL_INV(40,2018->T) PRINT(T) END PROGRAM  {{out}}  1969 0 96 121 -1  =={{header|F_Sharp|F#}}==  //Calculate the Modular Inverse: Nigel Galloway: April 3rd., 2018 let MI n g = let rec fN n i g e l a = match e with | 0 -> g | _ -> let o = n/e fN e l a (n-o*e) (i-o*l) (g-o*a) (n+(fN n 1 0 g 0 1))%n  {{out}}  MI 2017 42 -> 1969  ## Factor USE: math.functions 42 2017 mod-inv  {{out}} txt 1969  ## Forth ANS Forth with double-number word set  : invmod { a m | v b c -- inv } m to v 1 to c 0 to b begin a while v a / >r c b s>d c s>d r@ 1 m*/ d- d>s to c to b a v s>d a s>d r> 1 m*/ d- d>s to a to v repeat b m mod dup to b 0< if m b + else b then ;  ANS Forth version without locals  : modinv ( a m - inv) dup 1- \ a m (m != 1)? if \ a m tuck 1 0 \ m0 a m 1 0 begin \ m0 a m inv x0 2>r over 1 > \ m0 a m (a > 1)? R: inv x0 while \ m0 a m R: inv x0 tuck /mod \ m0 m (a mod m) (a/m) R: inv x0 r> tuck * \ m0 a' m' x0 (a/m)*x0 R: inv r> swap - \ m0 a' m' x0 (inv-q) R: repeat \ m0 a' m' inv' x0' 2drop \ m0 R: inv x0 2r> drop \ m0 inv R: dup 0< \ m0 inv (inv < 0)? if over + then \ m0 (inv + m0) then \ x inv' nip \ inv ;   42 2017 invmod . 1969 42 2017 modinv . 1969  ## FreeBASIC ' version 10-07-2018 ' compile with: fbc -s console Type ext_euclid Dim As Integer a, b End Type ' "Table method" aka "The Magic Box" Function magic_box(x As Integer, y As Integer) As ext_euclid Dim As Integer a(1 To 128), b(1 To 128), d(1 To 128), k(1 To 128) a(1) = 1 : b(1) = 0 : d(1) = x a(2) = 0 : b(2) = 1 : d(2) = y : k(2) = x \ y Dim As Integer i = 2 While Abs(d(i)) <> 1 i += 1 a(i) = a(i -2) - k(i -1) * a(i -1) b(i) = b(i -2) - k(i -1) * b(i -1) d(i) = d(i -2) Mod d(i -1) k(i) = d(i -1) \ d(i) 'Print a(i),b(i),d(i),k(i) If d(i -1) Mod d(i) = 0 Then Exit While Wend If d(i) = -1 Then ' -1 * (ab + by) = -1 * -1 ==> -ab -by = 1 a(i) = -a(i) b(i) = -b(i) End If Function = Type( a(i), b(i) ) End Function ' ------=< MAIN >=------ Dim As Integer x, y, gcd Dim As ext_euclid result Do Read x, y If x = 0 AndAlso y = 0 Then Exit Do result = magic_box(x, y) With result gcd = .a * x + .b * y Print "a * "; Str(x); " + b * "; Str(y); Print " = GCD("; Str(x); ", "; Str(y); ") ="; gcd If gcd > 1 Then Print "No solution, numbers are not coprime" Else Print "a = "; .a; ", b = ";.b Print "The Modular inverse of "; x; " modulo "; y; " = "; While .a < 0 : .a += IIf(y > 0, y, -y) : Wend Print .a 'Print "The Modular inverse of "; y; " modulo "; x; " = "; 'While .b < 0 : .b += IIf(x > 0, x, -x) : Wend 'Print .b End if End With Print Loop Data 42, 2017 Data 40, 1 Data 52, -217 Data -486, 217 Data 40, 2018 Data 0, 0 ' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End  {{out}} a * 42 + b * 2017 = GCD(42, 2017) = 1 a = -48, b = 1 The Modular inverse of 42 modulo 2017 = 1969 a * 40 + b * 1 = GCD(40, 1) = 1 a = 0, b = 1 The Modular inverse of 40 modulo 1 = 0 a * 52 + b * -217 = GCD(52, -217) = 1 a = 96, b = 23 The Modular inverse of 52 modulo -217 = 96 a * -486 + b * 217 = GCD(-486, 217) = 1 a = -96, b = -215 The Modular inverse of -486 modulo 217 = 121 a * 40 + b * 2018 = GCD(40, 2018) = 2 No solution, numbers are not coprime  ## FunL import integers.egcd def modinv( a, m ) = val (g, x, _) = egcd( a, m ) if g != 1 then error( a + ' and ' + m + ' not coprime' ) val res = x % m if res < 0 then res + m else res println( modinv(42, 2017) )  {{out}}  1969  ## Go The standard library function uses the extended Euclidean algorithm internally. package main import ( "fmt" "math/big" ) func main() { a := big.NewInt(42) m := big.NewInt(2017) k := new(big.Int).ModInverse(a, m) fmt.Println(k) }  {{out}}  1969  =={{header|GW-BASIC}}== {{trans|Pascal}} {{works with|PC-BASIC|any}}  10 ' Modular inverse 20 LET E% = 42 30 LET T% = 2017 40 GOSUB 1000 50 PRINT MODINV% 60 END 990 ' increments e stp (step) times until bal is greater than t 992 ' repeats until bal = 1 (mod = 1) and returns count 994 ' bal will not be greater than t + e 1000 LET D% = 0 1010 IF E% >= T% THEN GOTO 1140 1020 LET BAL% = E% 1025 ' At least one iteration is necessary 1030 LET STP% = ((T% - BAL%) \ E%) + 1 1040 LET BAL% = BAL% + STP% * E% 1050 LET COUNT% = 1 + STP% 1060 LET BAL% = BAL% - T% 1070 WHILE BAL% <> 1 1080 LET STP% = ((T% - BAL%) \ E%) + 1 1090 LET BAL% = BAL% + STP% * E% 1100 LET COUNT% = COUNT% + STP% 1110 LET BAL% = BAL% - T% 1120 WEND 1130 LET D% = COUNT% 1140 LET MODINV% = D% 1150 RETURN  {{out}}  1969  ## Haskell -- Given a and m, return Just x such that ax = 1 mod m. -- If there is no such x return Nothing. modInv :: Int -> Int -> Maybe Int modInv a m | 1 == g = Just (mkPos i) | otherwise = Nothing where (i, _, g) = gcdExt a m mkPos x | x < 0 = x + m | otherwise = x -- Extended Euclidean algorithm. -- Given non-negative a and b, return x, y and g -- such that ax + by = g, where g = gcd(a,b). -- Note that x or y may be negative. gcdExt :: Int -> Int -> (Int, Int, Int) gcdExt a 0 = (1, 0, a) gcdExt a b = let (q, r) = a quotRem b (s, t, g) = gcdExt b r in (t, s - q * t, g) main :: IO () main = mapM_ print [2 modInv 4, 42 modInv 2017]  {{out}} Nothing Just 1969  =={{header|Icon}} and {{header|Unicon}}== {{trans|C}} procedure main(args) a := integer(args[1]) | 42 b := integer(args[2]) | 2017 write(mul_inv(a,b)) end procedure mul_inv(a,b) if b == 1 then return 1 (b0 := b, x0 := 0, x1 := 1) while a > 1 do { q := a/b (t := b, b := a%b, a := t) (t := x0, x0 := x1-q*x0, x1 := t) } return if (x1 > 0) then x1 else x1+b0 end  {{out}}  ->mi 1969 ->  Adding a coprime test: link numbers procedure main(args) a := integer(args[1]) | 42 b := integer(args[2]) | 2017 write(mul_inv(a,b)) end procedure mul_inv(a,b) if b == 1 then return 1 if gcd(a,b) ~= 1 then return "not coprime" (b0 := b, x0 := 0, x1 := 1) while a > 1 do { q := a/b (t := b, b := a%b, a := t) (t := x0, x0 := x1-q*x0, x1 := t) } return if (x1 > 0) then x1 else x1+b0 end  =={{header|IS-BASIC}}== 100 PRINT MODINV(42,2017) 120 DEF MODINV(A,B) 130 LET B=ABS(B) 140 IF A<0 THEN LET A=B-MOD(-A,B) 150 LET T=0:LET NT=1:LET R=B:LET NR=MOD(A,B) 160 DO WHILE NR<>0 170 LET Q=INT(R/NR) 180 LET TMP=NT:LET NT=T-QNT:LET T=TMP 190 LET TMP=NR:LET NR=R-QNR:LET R=TMP 200 LOOP 210 IF R>1 THEN 220 LET MODINV=-1 230 ELSE IF T<0 THEN 240 LET MODINV=T+B 250 ELSE 260 LET MODINV=T 270 END IF 280 END DEF  ## J '''Solution''': j modInv =: dyad def 'x y&|@^ <: 5 p: y'"0  '''Example''':  42 modInv 2017 1969  '''Notes''': • Calculates the modular inverse as a^( totient(m) - 1 ) mod m. • 5 p: y is Euler's totient function of y. • J has a fast implementation of modular exponentiation (which avoids the exponentiation altogether), invoked with the form m&|@^ (hence, we use explicitly-named arguments for this entry, as opposed to the "variable free" tacit style: the m&| construct must freeze the value before it can be used but we want to use different values in that expression at different times...). ## Java The BigInteger library has a method for this: System.out.println(BigInteger.valueOf(42).modInverse(BigInteger.valueOf(2017)));  {{out}} 1969  ## JavaScript Using brute force. var modInverse = function(a, b) { a %= b; for (var x = 1; x < b; x++) { if ((a*x)%b == 1) { return x; } } }  ## Julia {{works with|Julia|1.2}} ===Built-in=== Julia includes a built-in function for this: invmod(a, b)  ### C translation {{trans|C}} The following code works on any integer type. To maximize performance, we ensure (via a promotion rule) that the operands are the same type (and use built-ins zero(T) and one(T) for initialization of temporary variables to ensure that they remain of the same type throughout execution). function modinv{T<:Integer}(a::T, b::T) b0 = b x0, x1 = zero(T), one(T) while a > 1 q = div(a, b) a, b = b, a % b x0, x1 = x1 - q * x0, x0 end x1 < 0 ? x1 + b0 : x1 end modinv(a::Integer, b::Integer) = modinv(promote(a,b)...)  {{out}}  julia> invmod(42, 2017) 1969 julia> modinv(42, 2017) 1969  ## Kotlin // version 1.0.6 import java.math.BigInteger fun main(args: Array<String>) { val a = BigInteger.valueOf(42) val m = BigInteger.valueOf(2017) println(a.modInverse(m)) }  {{out}}  1969  ## Maple  1/42 mod 2017;  {{out}}  1969  ## Mathematica The built-in function FindInstance works well for this modInv[a_, m_] := Block[{x,k}, x /. FindInstance[a x == 1 + k m, {x, k}, Integers]]  Another way by using the built-in function PowerMod : PowerMod[a,-1,m]  For example : modInv[42, 2017] {1969} PowerMod[42, -1, 2017] 1969  =={{header|МК-61/52}}== П1 П2 <-> П0 0 П5 1 П6 ИП1 1 • x=0 14 С/П ИП0 1 - /-/ x<0 50 ИП0 ИП1 / [x] П4 ИП1 П3 ИП0 ^ ИП1 / [x] ИП1 * - П1 ИП3 П0 ИП5 П3 ИП6 ИП4 ИП5 * - П5 ИП3 П6 БП 14 ИП6 x<0 55 ИП2 + С/П  =={{header|Modula-2}}== {{trans|C}} <lang Modula-2>MODULE ModularInverse; FROM InOut IMPORT WriteString, WriteInt, WriteLn; TYPE Data = RECORD x : INTEGER; y : INTEGER END; VAR c : INTEGER; ab : ARRAY [1..5] OF Data; PROCEDURE mi(VAR a, b : INTEGER): INTEGER; VAR t, nt, r, nr, q, tmp : INTEGER; BEGIN b := ABS(b); IF a < 0 THEN a := b - (-a MOD b) END; t := 0; nt := 1; r := b; nr := a MOD b; WHILE (nr # 0) DO q := r / nr; tmp := nt; nt := t - q * nt; t := tmp; tmp := nr; nr := r - q * nr; r := tmp; END; IF (r > 1) THEN RETURN -1 END; IF (t < 0) THEN RETURN t + b END; RETURN t; END mi; BEGIN ab[1].x := 42; ab[1].y := 2017; ab[2].x := 40; ab[2].y := 1; ab[3].x := 52; ab[3].y := -217; ab[4].x := -486; ab[4].y := 217; ab[5].x := 40; ab[5].y := 2018; WriteLn; WriteString("Modular inverse"); WriteLn; FOR c := 1 TO 5 DO WriteInt(ab[c].x, 6); WriteString(", "); WriteInt(ab[c].y, 6); WriteString(" = "); WriteInt(mi(ab[c].x, ab[c].y),6); WriteLn; END; END ModularInverse.  {{out}} Modular inverse 42, 2017 = 1969 40, 1 = 0 52, -217 = 96 -486, 217 = 121 40, 2018 = -1  ## newLISP  (define (modular-multiplicative-inverse a n) (if (< n 0) (setf n (abs n))) (if (< a 0) (setf a (- n (% (- 0 a) n)))) (setf t 0) (setf nt 1) (setf r n) (setf nr (mod a n)) (while (not (zero? nr)) (setf q (int (div r nr))) (setf tmp nt) (setf nt (sub t (mul q nt))) (setf t tmp) (setf tmp nr) (setf nr (sub r (mul q nr))) (setf r tmp)) (if (> r 1) (setf retvalue nil)) (if (< t 0) (setf retvalue (add t n)) (setf retvalue t)) retvalue) (println (modular-multiplicative-inverse 42 2017))  Output:  1969  ## Nim {{trans|C}}  proc modInv(a0, b0: int): int = var (a, b, x0) = (a0, b0, 0) result = 1 if b == 1: return while a > 1: result = result - (a div b) * x0 a = a mod b swap a, b swap x0, result if result < 0: result += b0 echo modInv(42, 2017)  {{out}}  1969  ## OCaml ==={{trans|C}}=== let mul_inv a = function 1 -> 1 | b -> let rec aux a b x0 x1 = if a <= 1 then x1 else if b = 0 then failwith "mul_inv" else aux b (a mod b) (x1 - (a / b) * x0) x0 in let x = aux a b 0 1 in if x < 0 then x + b else x  Testing:  # mul_inv 42 2017 ;; - : int = 1969  ==={{trans|Haskell}}=== let rec gcd_ext a = function | 0 -> (1, 0, a) | b -> let s, t, g = gcd_ext b (a mod b) in (t, s - (a / b) * t, g) let mod_inv a m = let mk_pos x = if x < 0 then x + m else x in match gcd_ext a m with | i, _, 1 -> mk_pos i | _ -> failwith "mod_inv"  Testing:  # mod_inv 42 2017 ;; - : int = 1969  ## Oforth Usage : a modulus invmod // euclid ( a b -- u v r ) // Return r = gcd(a, b) and (u, v) / r = au + bv : euclid(a, b) | q u u1 v v1 | b 0 < ifTrue: [ b neg ->b ] a 0 < ifTrue: [ b a neg b mod - ->a ] 1 dup ->u ->v1 0 dup ->v ->u1 while(b) [ b a b /mod ->q ->b ->a u1 u u1 q * - ->u1 ->u v1 v v1 q * - ->v1 ->v ] u v a ; : invmod(a, modulus) a modulus euclid 1 == ifFalse: [ drop drop null return ] drop dup 0 < ifTrue: [ modulus + ] ;  {{out}}  42 2017 invmod println 1969  ## PARI/GP Mod(1/42,2017)  ## Pascal  // increments e step times until bal is greater than t // repeats until bal = 1 (mod = 1) and returns count // bal will not be greater than t + e function modInv(e, t : integer) : integer; var d : integer; bal, count, step : integer; begin d := 0; if e < t then begin count := 1; bal := e; repeat step := ((t-bal) DIV e)+1; bal := bal + step * e; count := count + step; bal := bal - t; until bal = 1; d := count; end; modInv := d; end;  Testing:  Writeln(modInv(42,2017));  {{out}} 1969  ## Perl Various CPAN modules can do this, such as: use bigint; say 42->bmodinv(2017); # or use Math::ModInt qw/mod/; say mod(42, 2017)->inverse->residue; # or use Math::Pari qw/PARI lift/; say lift PARI "Mod(1/42,2017)"; # or use Math::GMP qw/:constant/; say 42->bmodinv(2017); # or use ntheory qw/invmod/; say invmod(42, 2017);  or we can write our own: sub invmod { my($a,$n) = @_; my($t,$nt,$r,$nr) = (0, 1,$n, $a %$n);
while ($nr != 0) { # Use this instead of int($r/$nr) to get exact unsigned integer answers my$quot = int( ($r - ($r % $nr)) /$nr );
($nt,$t) = ($t-$quot*$nt,$nt);
($nr,$r) = ($r-$quot*$nr,$nr);
}
return if $r > 1;$t += $n if$t < 0;
$t; } say invmod(42,2017);  '''Notes''': Special cases to watch out for include (1) where the inverse doesn't exist, such as invmod(14,28474), which should return undef or raise an exception, not return a wrong value. (2) the high bit of a or n is set, e.g. invmod(11,2**63), (3) negative first arguments, e.g. invmod(-11,23). The modules and code above handle these cases, but some other language implementations for this task do not. ## Perl 6 sub inverse($n, :$modulo) { my ($c, $d,$uc, $vc,$ud, $vd) = ($n % $modulo,$modulo, 1, 0, 0, 1);
my $q; while$c != 0 {
($q,$c, $d) = ($d div $c,$d % $c,$c);
($uc,$vc, $ud,$vd) = ($ud -$q*$uc,$vd - $q*$vc, $uc,$vc);
}
return $ud %$modulo;
}

say inverse 42, :modulo(2017)


## Phix

{{trans|C}}

function mul_inv(integer a, n)
if n<0 then n = -n end if
if a<0 then a = n - mod(-a,n) end if
integer t = 0,  nt = 1,
r = n,  nr = a;
while nr!=0 do
integer q = floor(r/nr)
{t, nt} = {nt, t-q*nt}
{r, nr} = {nr, r-q*nr}
end while
if r>1 then return "a is not invertible" end if
if t<0 then t += n end if
return t
end function

?mul_inv(42,2017)
?mul_inv(40, 1)
?mul_inv(52, -217)  /* Pari semantics for negative modulus */
?mul_inv(-486, 217)
?mul_inv(40, 2018)


{{out}}


1969
0
96
121
"a is not invertible"



## PHP

'''Algorithm Implementation'''

<?php
function invmod($a,$n){
if ($n < 0)$n = -$n; if ($a < 0) $a =$n - (-$a %$n);
$t = 0;$nt = 1; $r =$n; $nr =$a % $n; while ($nr != 0) {
$quot= intval($r/$nr);$tmp = $nt;$nt = $t -$quot*$nt;$t = $tmp;$tmp = $nr;$nr = $r -$quot*$nr;$r = $tmp; } if ($r > 1) return -1;
if ($t < 0)$t += $n; return$t;
}
printf("%d\n", invmod(42, 2017));
?>


{{Out}}

1969


## PicoLisp

{{trans|C}}

(de modinv (A B)
(let (B0 B  X0 0  X1 1  Q 0  T1 0)
(while (< 1 A)
(setq
Q (/ A B)
T1 B
B (% A B)
A T1
T1 X0
X0 (- X1 (* Q X0))
X1 T1 ) )
(if (lt0 X1) (+ X1 B0) X1) ) )

(println
(modinv 42 2017) )

(bye)


## PL/I

{{trans|REXX}}

*process source attributes xref or(!);
/*--------------------------------------------------------------------
* 13.07.2015 Walter Pachl
*-------------------------------------------------------------------*/
minv: Proc Options(main);
Dcl (x,y) Bin Fixed(31);
x=42;
y=2017;
Put Edit('modular inverse of',x,' by ',y,' ---> ',modinv(x,y))
(Skip,3(a,f(4)));
modinv: Proc(a,b) Returns(Bin Fixed(31));
Dcl (a,b,ob,ox,d,t) Bin Fixed(31);
ob=b;
ox=0;
d=1;

If b=1 Then;
Else Do;
Do While(a>1);
q=a/b;
r=mod(a,b);
a=b;
b=r;
t=ox;
ox=d-q*ox;
d=t;
End;
End;
If d<0 Then
d=d+ob;
Return(d);
End;
End;


{{out}}

modular inverse of  42 by 2017 ---> 1969


## PowerShell

function invmod($a,$n){
if ([int]$n -lt 0) {$n = -$n} if ([int]$a -lt 0) {$a =$n - ((-$a) %$n)}

$t = 0$nt = 1
$r =$n
$nr =$a % $n while ($nr -ne 0) {
$q = [Math]::truncate($r/$nr)$tmp = $nt$nt = $t -$q*$nt$t = $tmp$tmp = $nr$nr = $r -$q*$nr$r = $tmp } if ($r -gt 1) {return -1}
if ($t -lt 0) {$t += $n} return$t
}

invmod 42 2017


{{Out}}

PS> .\INVMOD.PS1
1969
PS>


## PureBasic

Using brute force.

EnableExplicit
Declare main()
Declare.i mi(a.i, b.i)

If OpenConsole("MODULAR-INVERSE")
main() : Input() : End
EndIf

Macro ModularInverse(a, b)
PrintN(~"\tMODULAR-INVERSE(" + RSet(Str(a),5) + "," +
RSet(Str(b),5)+") = " +
RSet(Str(mi(a, b)),5))
EndMacro

Procedure main()
ModularInverse(42, 2017)  ; = 1969
ModularInverse(40, 1)     ; = 0
ModularInverse(52, -217)  ; = 96
ModularInverse(-486, 217) ; = 121
ModularInverse(40, 2018)  ; = -1
EndProcedure

Procedure.i mi(a.i, b.i)
Define x.i = 1,
y.i = Int(Abs(b)),
r.i = 0
If y = 1 : ProcedureReturn 0 : EndIf
While x < y
r = (a * x) % b
If r = 1 Or (y + r) = 1
Break
EndIf
x + 1
Wend
If x > y - 1 : x = -1 : EndIf
ProcedureReturn x
EndProcedure


{{out}}

        MODULAR-INVERSE(   42, 2017) =  1969
MODULAR-INVERSE(   40,    1) =     0
MODULAR-INVERSE(   52, -217) =    96
MODULAR-INVERSE( -486,  217) =   121
MODULAR-INVERSE(   40, 2018) =    -1


## Python

===Iteration and error-handling=== Implementation of this [http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Iterative_method_2 pseudocode] with [https://en.wikibooks.org/wiki/Algorithm_Implementation/Mathematics/Extended_Euclidean_algorithm#Modular_inverse this].

 def extended_gcd(aa, bb):
lastremainder, remainder = abs(aa), abs(bb)
x, lastx, y, lasty = 0, 1, 1, 0
while remainder:
lastremainder, (quotient, remainder) = remainder, divmod(lastremainder, remainder)
x, lastx = lastx - quotient*x, x
y, lasty = lasty - quotient*y, y
return lastremainder, lastx * (-1 if aa < 0 else 1), lasty * (-1 if bb < 0 else 1)

>>> def modinv(a, m):
g, x, y = extended_gcd(a, m)
if g != 1:
raise ValueError
return x % m

>>> modinv(42, 2017)
1969
>>>


### Recursion and an option type

Or, using functional composition as an alternative to iterative mutation, and wrapping the resulting value in an option type, to allow for the expression of computations which establish the '''absence''' of a modular inverse:

from functools import (reduce)
from itertools import (chain)

# modInv :: Int -> Int -> Maybe Int
def modInv(a):
return lambda m: (
lambda ig=gcdExt(a)(m): (
lambda i=ig[0]: (
Just(i + m if 0 > i else i) if 1 == ig[2] else (
Nothing()
)
)
)()
)()

# gcdExt :: Int -> Int -> (Int, Int, Int)
def gcdExt(x):
def go(a, b):
if 0 == b:
return (1, 0, a)
else:
(q, r) = divmod(a, b)
(s, t, g) = go(b, r)
return (t, s - q * t, g)
return lambda y: go(x, y)

#  TEST ---------------------------------------------------

# Numbers between 2010 and 2015 which do yield modular inverses for 42:

# main :: IO ()
def main():
print (
mapMaybe(
lambda y: bindMay(modInv(42)(y))(
lambda mInv: Just((y, mInv))
)
)(
enumFromTo(2010)(2025)
)
)

# -> [(2011, 814), (2015, 48), (2017, 1969), (2021, 1203)]

# GENERIC ABSTRACTIONS ------------------------------------

# enumFromTo :: Int -> Int -> [Int]
def enumFromTo(m):
return lambda n: list(range(m, 1 + n))

# bindMay (>>=) :: Maybe  a -> (a -> Maybe b) -> Maybe b
def bindMay(m):
return lambda mf: (
m if m.get('Nothing') else mf(m.get('Just'))
)

# Just :: a -> Maybe a
def Just(x):
return {'type': 'Maybe', 'Nothing': False, 'Just': x}

# mapMaybe :: (a -> Maybe b) -> [a] -> [b]
def mapMaybe(mf):
return lambda xs: reduce(
lambda a, x: maybe(a)(lambda j: a + [j])(mf(x)),
xs,
[]
)

# maybe :: b -> (a -> b) -> Maybe a -> b
def maybe(v):
return lambda f: lambda m: v if m.get('Nothing') else (
f(m.get('Just'))
)

# Nothing :: Maybe a
def Nothing():
return {'type': 'Maybe', 'Nothing': True}

# MAIN ---
main()


{{Out}}


[(2011, 814), (2015, 48), (2017, 1969), (2021, 1203)]


## Racket


(require math)
(modular-inverse 42 2017)



{{out}}


1969



## REXX

/*REXX program calculates and displays the  modular inverse  of an integer  X  modulo Y.*/
parse arg x y .                                  /*obtain two integers from the C.L.    */
if x=='' | x==","  then x=   42                  /*Not specified?  Then use the default.*/
if y=='' | y==","  then y= 2017                  /* "      "         "   "   "     "    */
say  'modular inverse of '      x       " by "       y        ' ───► '         modInv(x,y)
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
modInv: parse arg a,b 1 ob;     z=0              /*B & OB are obtained from the 2nd arg.*/
$=1 if b\=1 then do while a>1 parse value a/b a//b b z with q b a t z=$ - q*z;              $=trunc(t) end /*while*/ if$<0  then $=$+ob
return $ '''output''' when using the default inputs of: 42 2017  modular inverse of 42 by 2017 ───► 1969  ## Ring  see "42 %! 2017 = " + multInv(42, 2017) + nl func multInv a,b b0 = b x0 = 0 multInv = 1 if b = 1 return 0 ok while a > 1 q = floor(a / b) t = b b = a % b a = t t = x0 x0 = multInv - q * x0 multInv = t end if multInv < 0 multInv = multInv + b0 ok return multInv  Output:  42 %! 2017 = 1969  ## Ruby #based on pseudo code from http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Iterative_method_2 and from translating the python implementation. def extended_gcd(a, b) last_remainder, remainder = a.abs, b.abs x, last_x, y, last_y = 0, 1, 1, 0 while remainder != 0 last_remainder, (quotient, remainder) = remainder, last_remainder.divmod(remainder) x, last_x = last_x - quotient*x, x y, last_y = last_y - quotient*y, y end return last_remainder, last_x * (a < 0 ? -1 : 1) end def invmod(e, et) g, x = extended_gcd(e, et) if g != 1 raise 'The maths are broken!' end x % et end   > invmod(42,2017) => 1969  Simplified equivalent implementation  def modinv(a, m) # compute a^-1 mod m if possible raise "NO INVERSE - #{a} and #{m} not coprime" unless a.gcd(m) == 1 return m if m == 1 m0, inv, x0 = m, 1, 0 while a > 1 inv -= (a / m) * x0 a, m = m, a % m inv, x0 = x0, inv end inv += m0 if inv < 0 inv end   > modinv(42,2017) => 1969  ## Run BASIC print multInv(42, 2017) end function multInv(a,b) b0 = b multInv = 1 if b = 1 then goto [endFun] while a > 1 q = a / b t = b b = a mod b a = t t = x0 x0 = multInv - q * x0 multInv = int(t) wend if multInv < 0 then multInv = multInv + b0 [endFun] end function  {{out}}  1969  ## Rust fn mod_inv(a: isize, module: isize) -> isize { let mut mn = (module, a); let mut xy = (0, 1); while mn.1 != 0 { xy = (xy.1, xy.0 - (mn.0 / mn.1) * xy.1); mn = (mn.1, mn.0 % mn.1); } while xy.0 < 0 { xy.0 += module; } xy.0 } fn main() { println!("{}", mod_inv(42, 2017)) }  {{out}}  1969  Alternative implementation  fn modinv(a0: isize, m0: isize) -> isize { if m0 == 1 { return 1 } let (mut a, mut m, mut x0, mut inv) = (a0, m0, 0, 1); while a > 1 { inv -= (a / m) * x0; a = a % m; std::mem::swap(&mut a, &mut m); std::mem::swap(&mut x0, &mut inv); } if inv < 0 { inv += m0 } inv } fn main() { println!("{}", modinv(42, 2017)) }  {{out}}  1969  ## Scala Based on the ''Handbook of Applied Cryptography'', Chapter 2. See http://cacr.uwaterloo.ca/hac/ .  def gcdExt(u: Int, v: Int): (Int, Int, Int) = { @tailrec def aux(a: Int, b: Int, x: Int, y: Int, x1: Int, x2: Int, y1: Int, y2: Int): (Int, Int, Int) = { if(b == 0) (x, y, a) else { val (q, r) = (a / b, a % b) aux(b, r, x2 - q * x1, y2 - q * y1, x, x1, y, y1) } } aux(u, v, 1, 0, 0, 1, 1, 0) } def modInv(a: Int, m: Int): Option[Int] = { val (i, j, g) = gcdExt(a, m) if (g == 1) Option(if (i < 0) i + m else i) else Option.empty }  Translated from C++ (on this page)  def modInv(a: Int, m: Int, x:Int = 1, y:Int = 0) : Int = if (m == 0) x else modInv(m, a%m, y, x - y*(a/m))  {{out}} scala> modInv(2,4) res1: Option[Int] = None scala> modInv(42, 2017) res2: Option[Int] = Some(1976)  ## Seed7 The library [http://seed7.sourceforge.net/libraries/bigint.htm bigint.s7i] defines the [http://seed7.sourceforge.net/manual/types.htm#bigInteger bigInteger] function [http://seed7.sourceforge.net/libraries/bigint.htm#modInverse%28in_var_bigInteger,in_var_bigInteger%29 modInverse]. It returns the modular multiplicative inverse of a modulo b when a and b are coprime (gcd(a, b) = 1). If a and b are not coprime (gcd(a, b) <> 1) the exception RANGE_ERROR is raised. const func bigInteger: modInverse (in var bigInteger: a, in var bigInteger: b) is func result var bigInteger: modularInverse is 0_; local var bigInteger: b_bak is 0_; var bigInteger: x is 0_; var bigInteger: y is 1_; var bigInteger: lastx is 1_; var bigInteger: lasty is 0_; var bigInteger: temp is 0_; var bigInteger: quotient is 0_; begin if b < 0_ then raise RANGE_ERROR; end if; if a < 0_ and b <> 0_ then a := a mod b; end if; b_bak := b; while b <> 0_ do temp := b; quotient := a div b; b := a rem b; a := temp; temp := x; x := lastx - quotient * x; lastx := temp; temp := y; y := lasty - quotient * y; lasty := temp; end while; if a = 1_ then modularInverse := lastx; if modularInverse < 0_ then modularInverse +:= b_bak; end if; else raise RANGE_ERROR; end if; end func;  Original source: [http://seed7.sourceforge.net/algorith/math.htm#modInverse] ## Sidef Built-in: say 42.modinv(2017)  Algorithm implementation: func invmod(a, n) { var (t, nt, r, nr) = (0, 1, n, a % n) while (nr != 0) { var quot = int((r - (r % nr)) / nr); (nt, t) = (t - quot*nt, nt); (nr, r) = (r - quot*nr, nr); } r > 1 && return() t < 0 && (t += n) t } say invmod(42, 2017)  {{out}}  1969  ## Tcl {{trans|Haskell}} proc gcdExt {a b} { if {$b == 0} {
return [list 1 0 $a] } set q [expr {$a / $b}] set r [expr {$a % $b}] lassign [gcdExt$b $r] s t g return [list$t [expr {$s -$q*$t}]$g]
}
proc modInv {a m} {
lassign [gcdExt $a$m] i -> g
if {$g != 1} { return -code error "no inverse exists of$a %! $m" } while {$i < 0} {incr i $m} return$i
}


Demonstrating

puts "42 %! 2017 = [modInv 42 2017]"
catch {
puts "2 %! 4 = [modInv 2 4]"
} msg; puts \$msg


{{out}}


42 %! 2017 = 1969
no inverse exists of 2 %! 4



## tsql

;WITH Iterate(N,A,B,X0,X1)
AS (
SELECT
1
,CASE WHEN @a < 0 THEN @b-(-@a % @b) ELSE @a END
,CASE WHEN @b < 0 THEN -@b ELSE @b END
,0
,1
UNION ALL
SELECT
N+1
,B
,A%B
,X1-((A/B)*X0)
,X0
FROM Iterate
WHERE A != 1 AND B != 0
),
ModularInverse(Result)
AS (
SELECT
-1
FROM Iterate
WHERE A != 1 AND B = 0
UNION ALL
SELECT
TOP(1)
CASE WHEN X1 < 0 THEN X1+@b ELSE X1 END AS Result
FROM Iterate
WHERE (SELECT COUNT(*) FROM Iterate WHERE A != 1 AND B = 0) = 0
ORDER BY N DESC
)
SELECT *
FROM ModularInverse


## uBasic/4tH

{{trans|C}} Print FUNC(_MulInv(42, 2017)) End

_MulInv Param(2) Local(5)

c@ = b@ f@ = 0 g@ = 1

If b@ = 1 Then Return

Do While a@ > 1 e@ = a@ / b@ d@ = b@ b@ = a@ % b@ a@ = d@

d@ = f@
f@ = g@ - e@ * f@
g@ = d@


Loop

If g@ < 0 Then g@ = g@ + c@ Return (g@)


{{trans|Perl}}
<lang>Print FUNC(_mul_inv(42, 2017))
Print FUNC(_mul_inv(40, 1))
Print FUNC(_mul_inv(52, -217))
Print FUNC(_mul_inv(-486, 217))
Print FUNC(_mul_inv(40, 2018))

End

_mul_inv Param(2)
Local(6)

If (b@ < 0) b@ = -b@
If (a@ < 0) a@ = b@ - (-a@ % b@)
c@ = 0 : d@ = 1 :  e@ = b@ :  f@ = a@ % b@

Do Until (f@ = 0)
g@ = e@/f@
h@ = d@ :  d@ = c@ - g@*d@ :  c@ = h@
h@ = f@ :  f@ = e@ - g@*f@ :  e@ = h@
Loop

If (e@ > 1) Return (-1)  ' No inverse'
If (c@ < 0) c@ = c@ + b@
Return (c@)


{{out}}

1969
0
96
121
-1

0 OK, 0:156


## VBA

{{trans|Phix}}


Private Function mul_inv(a As Long, n As Long) As Variant
If n < 0 Then n = -n
If a < 0 Then a = n - ((-a) Mod n)
Dim t As Long: t = 0
Dim nt As Long: nt = 1
Dim r As Long: r = n
Dim nr As Long: nr = a
Dim q As Long
Do While nr <> 0
q = r \ nr
tmp = t
t = nt
nt = tmp - q * nt
tmp = r
r = nr
nr = tmp - q * nr
Loop
If r > 1 Then
mul_inv = "a is not invertible"
Else
If t < 0 Then t = t + n
mul_inv = t
End If
End Function
Public Sub mi()
Debug.Print mul_inv(42, 2017)
Debug.Print mul_inv(40, 1)
Debug.Print mul_inv(52, -217) '/* Pari semantics for negative modulus */
Debug.Print mul_inv(-486, 217)
Debug.Print mul_inv(40, 2018)
End Sub


{{out}}

 1969
0
96
121
a is not invertible


## XPL0

code IntOut=11, Text=12;
int  X;
def  A=42, M=2017;
[for X:= 2 to M-1 do
if rem(A*X/M) = 1 then [IntOut(0, X);  exit];
Text(0, "Does not exist");
]


{{out}}


1969



## zkl

fcn gcdExt(a,b){
if(b==0) return(1,0,a);
q,r:=a.divr(b); s,t,g:=gcdExt(b,r); return(t,s-q*t,g);
}
fcn modInv(a,m){i,_,g:=gcdExt(a,m); if(g==1) {if(i<0)i+m} else Void}


divr(a,b) is [integer] (a/b,remainder) {{out}}


modInv(2,4)  //-->Void
modInv(42,2017)  //-->1969