⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|Fractals}}
;Task
Produce a graphical or ASCII-art representation of a [[wp:Peano curve|Peano curve]] of at least order 3.
C
Adaptation of the C program in the [https://www.researchgate.net/profile/Christoph_Schierz2/publication/228982573_A_recursive_algorithm_for_the_generation_of_space-filling_curves/links/0912f505c2f419782c000000/A-recursive-algorithm-for-the-generation-of-space-filling-curves.pdf Breinholt-Schierz paper] , requires the [http://www.cs.colorado.edu/~main/bgi/cs1300/ WinBGIm] library.
/*Abhishek Ghosh, 14th September 2018*/
#include <graphics.h>
#include <math.h>
void Peano(int x, int y, int lg, int i1, int i2) {
if (lg == 1) {
lineto(3*x,3*y);
return;
}
lg = lg/3;
Peano(x+(2*i1*lg), y+(2*i1*lg), lg, i1, i2);
Peano(x+((i1-i2+1)*lg), y+((i1+i2)*lg), lg, i1, 1-i2);
Peano(x+lg, y+lg, lg, i1, 1-i2);
Peano(x+((i1+i2)*lg), y+((i1-i2+1)*lg), lg, 1-i1, 1-i2);
Peano(x+(2*i2*lg), y+(2*(1-i2)*lg), lg, i1, i2);
Peano(x+((1+i2-i1)*lg), y+((2-i1-i2)*lg), lg, i1, i2);
Peano(x+(2*(1-i1)*lg), y+(2*(1-i1)*lg), lg, i1, i2);
Peano(x+((2-i1-i2)*lg), y+((1+i2-i1)*lg), lg, 1-i1, i2);
Peano(x+(2*(1-i2)*lg), y+(2*i2*lg), lg, 1-i1, i2);
}
int main(void) {
initwindow(1000,1000,"Peano, Peano");
Peano(0, 0, 1000, 0, 0); /* Start Peano recursion. */
getch();
cleardevice();
return 0;
}
Go
{{libheader|Go Graphics}}
The following is based on the recursive algorithm and C code in [https://www.researchgate.net/profile/Christoph_Schierz2/publication/228982573_A_recursive_algorithm_for_the_generation_of_space-filling_curves/links/0912f505c2f419782c000000/A-recursive-algorithm-for-the-generation-of-space-filling-curves.pdf this paper] scaled up to 81 x 81 points. The image produced is a variant known as a Peano-Meander curve (see Figure 1(b) [https://www5.in.tum.de/lehre/vorlesungen/asc/ss17/blatt10/ws10.pdf here]).
package main
import "github.com/fogleman/gg"
var points []gg.Point
const width = 81
func peano(x, y, lg, i1, i2 int) {
if lg == 1 {
px := float64(width-x) * 10
py := float64(width-y) * 10
points = append(points, gg.Point{px, py})
return
}
lg /= 3
peano(x+2*i1*lg, y+2*i1*lg, lg, i1, i2)
peano(x+(i1-i2+1)*lg, y+(i1+i2)*lg, lg, i1, 1-i2)
peano(x+lg, y+lg, lg, i1, 1-i2)
peano(x+(i1+i2)*lg, y+(i1-i2+1)*lg, lg, 1-i1, 1-i2)
peano(x+2*i2*lg, y+2*(1-i2)*lg, lg, i1, i2)
peano(x+(1+i2-i1)*lg, y+(2-i1-i2)*lg, lg, i1, i2)
peano(x+2*(1-i1)*lg, y+2*(1-i1)*lg, lg, i1, i2)
peano(x+(2-i1-i2)*lg, y+(1+i2-i1)*lg, lg, 1-i1, i2)
peano(x+2*(1-i2)*lg, y+2*i2*lg, lg, 1-i1, i2)
}
func main() {
peano(0, 0, width, 0, 0)
dc := gg.NewContext(820, 820)
dc.SetRGB(1, 1, 1) // White background
dc.Clear()
for _, p := range points {
dc.LineTo(p.X, p.Y)
}
dc.SetRGB(1, 0, 1) // Magenta curve
dc.SetLineWidth(1)
dc.Stroke()
dc.SavePNG("peano.png")
}
=={{header|IS-BASIC}}==
=={{header|Fōrmulæ}}==
In [https://wiki.formulae.org/Peano_curve this] page you can see the solution of this task.
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text ([http://wiki.formulae.org/Editing_F%C5%8Drmul%C3%A6_expressions more info]). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.
The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.
## Julia
The peano function is from the C version.
```julia
using Gtk, Graphics, Colors
function peano(ctx, x, y, lg, i1, i2)
if lg < 3
line_to(ctx, x - 250, y - 250)
stroke(ctx)
move_to(ctx, x - 250 , y - 250)
else
lg = div(lg, 3)
peano(ctx, x + (2 * i1 * lg), y + (2 * i1 * lg), lg, i1, i2)
peano(ctx, x + ((i1 - i2 + 1) * lg), y + ((i1 + i2) * lg), lg, i1, 1 - i2)
peano(ctx, x + lg, y + lg, lg, i1, 1 - i2)
peano(ctx, x + ((i1 + i2) * lg), y + ((i1 - i2 + 1) * lg), lg, 1 - i1, 1 - i2)
peano(ctx, x + (2 * i2 * lg), y + ( 2 * (1-i2) * lg), lg, i1, i2)
peano(ctx, x + ((1 + i2 - i1) * lg), y + ((2 - i1 - i2) * lg), lg, i1, i2)
peano(ctx, x + (2 * (1 - i1) * lg), y + (2 * (1 - i1) * lg), lg, i1, i2)
peano(ctx, x + ((2 - i1 - i2) * lg), y + ((1 + i2 - i1) * lg), lg, 1 - i1, i2)
peano(ctx, x + (2 * (1 - i2) * lg), y + (2 * i2 * lg), lg, 1 - i1, i2)
end
end
const can = @GtkCanvas()
const win = GtkWindow(can, "Peano Curve", 500, 500)
@guarded draw(can) do widget
ctx = getgc(can)
h = height(can)
w = width(can)
set_source(ctx, colorant"blue")
set_line_width(ctx, 1)
peano(ctx, w/2, h/2, 500, 0, 0)
end
show(can)
const cond = Condition()
endit(w) = notify(cond)
signal_connect(endit, win, :destroy)
wait(cond)
Perl
use SVG;
use List::Util qw(max min);
use constant pi => 2 * atan2(1, 0);
# Compute the curve with a Lindemayer-system
my %rules = (
L => 'LFRFL-F-RFLFR+F+LFRFL',
R => 'RFLFR+F+LFRFL-F-RFLFR'
);
my $peano = 'L';
$peano =~ s/([LR])/$rules{$1}/eg for 1..4;
# Draw the curve in SVG
($x, $y) = (0, 0);
$theta = pi/2;
$r = 4;
for (split //, $peano) {
if (/F/) {
push @X, sprintf "%.0f", $x;
push @Y, sprintf "%.0f", $y;
$x += $r * cos($theta);
$y += $r * sin($theta);
}
elsif (/\+/) { $theta += pi/2; }
elsif (/\-/) { $theta -= pi/2; }
}
$max = max(@X,@Y);
$xt = -min(@X)+10;
$yt = -min(@Y)+10;
$svg = SVG->new(width=>$max+20, height=>$max+20);
$points = $svg->get_path(x=>\@X, y=>\@Y, -type=>'polyline');
$svg->rect(width=>"100%", height=>"100%", style=>{'fill'=>'black'});
$svg->polyline(%$points, style=>{'stroke'=>'orange', 'stroke-width'=>1}, transform=>"translate($xt,$yt)");
open $fh, '>', 'peano_curve.svg';
print $fh $svg->xmlify(-namespace=>'svg');
close $fh;
[https://github.com/SqrtNegInf/Rosettacode-Perl5-Smoke/blob/master/ref/peano_curve.svg Peano curve] (offsite image)
Perl 6
{{works with|Rakudo|2018.06}}
use SVG;
role Lindenmayer {
has %.rules;
method succ {
self.comb.map( { %!rules{$^c} // $c } ).join but Lindenmayer(%!rules)
}
}
my $peano = 'L' but Lindenmayer( { 'L' => 'LFRFL-F-RFLFR+F+LFRFL', 'R' => 'RFLFR+F+LFRFL-F-RFLFR' } );
$peano++ xx 4;
my @points = (10, 10);
for $peano.comb {
state ($x, $y) = @points[0,1];
state $d = 0 + 8i;
when 'F' { @points.append: ($x += $d.re).round(1), ($y += $d.im).round(1) }
when /< + - >/ { $d *= "{$_}1i" }
default { }
}
say SVG.serialize(
svg => [
:660width, :660height, :style<stroke:lime>,
:rect[:width<100%>, :height<100%>, :fill<black>],
:polyline[ :points(@points.join: ','), :fill<black> ],
],
);
See: [https://github.com/thundergnat/rc/blob/master/img/peano-perl6.svg Peano curve] (SVG image)
Phix
{{libheader|pGUI}} Space key toggles between switchback and meander curves.
-- demo\rosetta\peano_curve.exw
include pGUI.e
Ihandle dlg, canvas
cdCanvas cddbuffer, cdcanvas
bool meander = false -- space toggles (false==draw switchback curve)
constant width = 81
sequence points = {}
-- switchback peano:
--
-- There are (as per wp) four shapes to draw:
--
-- 1: +-v ^ 2: ^ v-+ 3: v ^-+ 2: +-^ v
-- | | | | | | | | | | | |
-- ^ v-+ +-v ^ +-^ v v ^-+
--
-- 1 starts bottom left, ends top right
-- 2 starts bottom right, ends top left
-- 3 starts top left, ends bottom right
-- 4 starts top right, ends bottom left
--
-- given the centre point (think {1,1}), and using {0,0} as the bottom left:
--
constant shapes = {{{-1,-1},{-1,0},{-1,+1},{0,+1},{0,0},{0,-1},{+1,-1},{+1,0},{+1,+1}},
{{+1,-1},{+1,0},{+1,+1},{0,+1},{0,0},{0,-1},{-1,-1},{-1,0},{-1,+1}}, -- (== sq_mul(shapes[1],{-1,0}))
{{-1,+1},{-1,0},{-1,-1},{0,-1},{0,0},{0,+1},{+1,+1},{+1,0},{+1,-1}}, -- (== reverse(shapes[2]))
{{+1,+1},{+1,0},{+1,-1},{0,-1},{0,0},{0,+1},{-1,+1},{-1,0},{-1,-1}}} -- (== reverse(shapes[1]))
constant subshapes = {{1,2,1,3,4,3,1,2,1},
{2,1,2,4,3,4,2,1,2}, -- == sq_sub({3,3,3,7,7,7,3,3,3},subshapes[1])
{3,4,3,1,2,1,3,4,3}, -- == sq_sub(5,subshapes[2])
{4,3,4,2,1,2,4,3,4}} -- == sq_sub(5,subshapes[1])
-- As noted, it should theoretically be possible to simplify/shorten/remove/inline those tables
procedure switchback_peano(integer x, y, level, shape)
-- (written from scratch, with a nod to the meander algorithm [below])
if level<=1 then
points = append(points, {x*10, y*10})
return
end if
level /= 3
for i=1 to 9 do
integer {dx,dy} = shapes[shape][i]
switchback_peano(x+dx*level,y+dy*level,level,subshapes[shape][i])
end for
end procedure
procedure meander_peano(integer x, y, lg, i1, i2)
-- (translated from Go)
if lg=1 then
integer px := (width-x) * 10,
py := (width-y) * 10
points = append(points, {px, py})
return
end if
lg /= 3
meander_peano(x+2*i1*lg, y+2*i1*lg, lg, i1, i2)
meander_peano(x+(i1-i2+1)*lg, y+(i1+i2)*lg, lg, i1, 1-i2)
meander_peano(x+lg, y+lg, lg, i1, 1-i2)
meander_peano(x+(i1+i2)*lg, y+(i1-i2+1)*lg, lg, 1-i1, 1-i2)
meander_peano(x+2*i2*lg, y+2*(1-i2)*lg, lg, i1, i2)
meander_peano(x+(1+i2-i1)*lg, y+(2-i1-i2)*lg, lg, i1, i2)
meander_peano(x+2*(1-i1)*lg, y+2*(1-i1)*lg, lg, i1, i2)
meander_peano(x+(2-i1-i2)*lg, y+(1+i2-i1)*lg, lg, 1-i1, i2)
meander_peano(x+2*(1-i2)*lg, y+2*i2*lg, lg, 1-i1, i2)
end procedure
function redraw_cb(Ihandle /*ih*/, integer /*posx*/, integer /*posy*/)
if length(points)=0 then
if meander then
meander_peano(0, 0, width, 0, 0)
else
switchback_peano(41, 41, width, 1)
end if
end if
cdCanvasActivate(cddbuffer)
cdCanvasBegin(cddbuffer, CD_OPEN_LINES)
for i=1 to length(points) do
integer {x,y} = points[i]
cdCanvasVertex(cddbuffer, x, y)
end for
cdCanvasEnd(cddbuffer)
cdCanvasFlush(cddbuffer)
return IUP_DEFAULT
end function
function map_cb(Ihandle ih)
cdcanvas = cdCreateCanvas(CD_IUP, ih)
cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas)
cdCanvasSetBackground(cddbuffer, CD_WHITE)
cdCanvasSetForeground(cddbuffer, CD_MAGENTA)
return IUP_DEFAULT
end function
function esc_close(Ihandle /*ih*/, atom c)
if c=K_ESC then return IUP_CLOSE end if
if c=' ' then
meander = not meander
points = {}
cdCanvasClear(cddbuffer)
IupUpdate(canvas)
end if
return IUP_CONTINUE
end function
procedure main()
IupOpen()
canvas = IupCanvas(NULL)
IupSetAttribute(canvas, "RASTERSIZE", "822x822") -- initial size
IupSetCallback(canvas, "MAP_CB", Icallback("map_cb"))
dlg = IupDialog(canvas)
IupSetAttribute(dlg, "TITLE", "Peano Curve")
IupSetAttribute(dlg, "DIALOGFRAME", "YES") -- no resize here
IupSetCallback(dlg, "K_ANY", Icallback("esc_close"))
IupSetCallback(canvas, "ACTION", Icallback("redraw_cb"))
IupMap(dlg)
IupShowXY(dlg,IUP_CENTER,IUP_CENTER)
IupMainLoop()
IupClose()
end procedure
main()
Racket
Draw the Peano curve using the classical turtle style known from Logo.
The MetaPict library is used to implement a turtle.
See also https://pdfs.semanticscholar.org/fee6/187cc2dd1679d4976db9522b06a49f63be46.pdf
/* Jens Axel Søgaard, 27th December 2018*/
#lang racket
(require metapict metapict/mat)
;;; Turtle State
(define p (pt 0 0)) ; current position
(define d (vec 0 1)) ; current direction
(define c '()) ; line segments drawn so far
;;; Turtle Operations
(define (jump q) (set! p q))
(define (move q) (set! c (cons (curve p -- q) c)) (set! p q))
(define (forward x) (move (pt+ p (vec* x d))))
(define (left a) (set! d (rot a d)))
(define (right a) (left (- a)))
;;; Peano
(define (peano n a h)
(unless (= n 0)
(right a)
(peano (- n 1) (- a) h)
(forward h)
(peano (- n 1) a h)
(forward h)
(peano (- n 1) (- a) h)
(left a)))
;;; Produce image
(set-curve-pict-size 400 400)
(with-window (window -1 81 -1 82)
(peano 6 90 3)
(draw* c))
Sidef
Using the LSystem class defined at [https://rosettacode.org/wiki/Hilbert_curve#Sidef Hilbert curve].
var rules = Hash(
L => 'LFRFL-F-RFLFR+F+LFRFL',
R => 'RFLFR+F+LFRFL-F-RFLFR',
)
var lsys = LSystem(
width: 325,
height: 650,
xoff: -3,
yoff: -3,
len: 4,
angle: 90,
color: 'dark green',
)
lsys.execute('L', 4, "peano_curve.png", rules)
Output image: [https://github.com/trizen/rc/blob/master/img/peano_curve.png Peano curve]
VBA
{{trans|C}}
Const WIDTH = 243 'a power of 3 for a evenly spaced curve
Dim n As Long
Dim points() As Single
Dim flag As Boolean
'Store the coordinate pairs (x, y) generated by Peano into
'a SafeArrayOfPoints with lineto. The number of points
'generated depend on WIDTH. Peano is called twice. Once
'to count the number of points, and twice to generate
'the points after the dynamic array has been
'redimensionalised.
'VBA doesn't have a lineto method. Instead of AddLine, which
'requires four parameters, including the begin pair of
'coordinates, the method AddPolyline is used, which is
'called from main after all the points are generated.
'This creates a single object, whereas AddLine would
'create thousands of small unconnected line objects.
Private Sub lineto(x As Integer, y As Integer)
If flag Then
points(n, 1) = x
points(n, 2) = y
End If
n = n + 1
End Sub
Private Sub Peano(ByVal x As Integer, ByVal y As Integer, ByVal lg As Integer, _
ByVal i1 As Integer, ByVal i2 As Integer)
If (lg = 1) Then
Call lineto(x * 3, y * 3)
Exit Sub
End If
lg = lg / 3
Call Peano(x + (2 * i1 * lg), y + (2 * i1 * lg), lg, i1, i2)
Call Peano(x + ((i1 - i2 + 1) * lg), y + ((i1 + i2) * lg), lg, i1, 1 - i2)
Call Peano(x + lg, y + lg, lg, i1, 1 - i2)
Call Peano(x + ((i1 + i2) * lg), y + ((i1 - i2 + 1) * lg), lg, 1 - i1, 1 - i2)
Call Peano(x + (2 * i2 * lg), y + (2 * (1 - i2) * lg), lg, i1, i2)
Call Peano(x + ((1 + i2 - i1) * lg), y + ((2 - i1 - i2) * lg), lg, i1, i2)
Call Peano(x + (2 * (1 - i1) * lg), y + (2 * (1 - i1) * lg), lg, i1, i2)
Call Peano(x + ((2 - i1 - i2) * lg), y + ((1 + i2 - i1) * lg), lg, 1 - i1, i2)
Call Peano(x + (2 * (1 - i2) * lg), y + (2 * i2 * lg), lg, 1 - i1, i2)
End Sub
Sub main()
n = 1: flag = False
Call Peano(0, 0, WIDTH, 0, 0) 'Start Peano recursion to count number of points
ReDim points(1 To n - 1, 1 To 2)
n = 1: flag = True
Call Peano(0, 0, WIDTH, 0, 0) 'Start Peano recursion to generate and store points
ActiveSheet.Shapes.AddPolyline points 'Excel assumed
End Sub
Yabasic
{{trans|VBA}}
WIDTH = 243 //a power of 3 for a evenly spaced curve
open window 700, 700
Peano(0, 0, WIDTH, 0, 0)
Sub Peano(x, y, lg, i1, i2)
If (lg = 1) Then
line x * 3, y * 3
return
End If
lg = lg / 3
Peano(x + (2 * i1 * lg), y + (2 * i1 * lg), lg, i1, i2)
Peano(x + ((i1 - i2 + 1) * lg), y + ((i1 + i2) * lg), lg, i1, 1 - i2)
Peano(x + lg, y + lg, lg, i1, 1 - i2)
Peano(x + ((i1 + i2) * lg), y + ((i1 - i2 + 1) * lg), lg, 1 - i1, 1 - i2)
Peano(x + (2 * i2 * lg), y + (2 * (1 - i2) * lg), lg, i1, i2)
Peano(x + ((1 + i2 - i1) * lg), y + ((2 - i1 - i2) * lg), lg, i1, i2)
Peano(x + (2 * (1 - i1) * lg), y + (2 * (1 - i1) * lg), lg, i1, i2)
Peano(x + ((2 - i1 - i2) * lg), y + ((1 + i2 - i1) * lg), lg, 1 - i1, i2)
Peano(x + (2 * (1 - i2) * lg), y + (2 * i2 * lg), lg, 1 - i1, i2)
End Sub
zkl
Using a Lindenmayer system and turtle graphics & turned 90°:
lsystem("L", // axiom
Dictionary("L","LFRFL-F-RFLFR+F+LFRFL", "R","RFLFR+F+LFRFL-F-RFLFR"), # rules
"+-F", 4) // constants, order
: turtle(_);
fcn lsystem(axiom,rules,consts,n){ // Lindenmayer system --> string
foreach k in (consts){ rules.add(k,k) }
buf1,buf2 := Data(Void,axiom).howza(3), Data().howza(3); // characters
do(n){
buf1.pump(buf2.clear(), rules.get);
t:=buf1; buf1=buf2; buf2=t; // swap buffers
}
buf1.text // n=4 --> 16,401 characters
}
Using Image Magick and the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl
fcn turtle(koch){
const D=10.0;
dir,angle, x,y := 0.0, (90.0).toRad(), 20.0, 830.0; // turtle; x,y are float
img,color := PPM(850,850), 0x00ff00;
foreach c in (koch){
switch(c){
case("F"){ // draw forward
dx,dy := D.toRectangular(dir);
tx,ty := x,y; x,y = (x+dx),(y+dy);
img.line(tx.toInt(),ty.toInt(), x.toInt(),y.toInt(), color);
}
case("-"){ dir-=angle } // turn right
case("+"){ dir+=angle } // turn left
}
}
img.writeJPGFile("peanoCurve.zkl.jpg");
}
{{out}} Image at [http://www.zenkinetic.com/Images/RosettaCode/peanoCurve.zkl.jpg Peano curve]