⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

{{task}} The task is to write a program which solves [[wp:Hidato|Hidato (aka Hidoku) puzzles]].

The rules are:

• You are given a grid with some numbers placed in it. The other squares in the grid will be blank. ** The grid is not necessarily rectangular. ** The grid may have holes in it. ** The grid is always connected. ** The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. ** It may be assumed that the difference between numbers present on the grid is not greater than lucky 13.
• The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the [[wp:Moore neighborhood]] of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). ** Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. ** A square may only contain one number.
• In a proper Hidato puzzle, the solution is unique.

For example the following problem [[File:Hidato_Start.png|center|Sample Hidato problem, from Wikipedia]]

has the following solution, with path marked on it:

[[File:HEnd.png|center|Solution to sample Hidato problem]]

• [[A* search algorithm]]
• [[N-queens problem]]
• [[Solve a Holy Knight's tour]]
• [[Solve a Knight's tour]]
• [[Solve a Hopido puzzle]]
• [[Solve a Numbrix puzzle]]
• [[Solve the no connection puzzle]];

## AutoHotkey

```SolveHidato(Grid, Locked, Max, row, col, num:=1, R:="", C:=""){
if (R&&C)							; if neighbors (not first iteration)
{
Grid[R, C] := ">" num 					; place num in current neighbor and mark it visited ">"
row:=R, col:=C						; move to current neighbor
}

num++								; increment num
if (num=max)							; if reached end
return map(Grid)					; return solution

if locked[num]							; if current num is a locked value
{
row := StrSplit((StrSplit(locked[num], ",").1) , ":").1	; find row of num
col := StrSplit((StrSplit(locked[num], ",").1) , ":").2	; find col of num
if SolveHidato(Grid, Locked, Max, row, col, num)	; solve for current location and value
return map(Grid)				; if solved, return solution
}
else
{
for each, value in StrSplit(Neighbor(row,col), ",")
{
R := StrSplit(value, ":").1
C := StrSplit(value, ":").2

if (Grid[R,C] = "")				; a hole or out of bounds
|| InStr(Grid[R, C], ">")			; visited
|| Locked[num+1] && !(Locked[num+1]~= "\b" R ":" C "\b") ; not neighbor of locked[num+1]
|| Locked[num-1] && !(Locked[num-1]~= "\b" R ":" C "\b") ; not neighbor of locked[num-1]
|| Locked[num]					; locked value
|| Locked[Grid[R, C]]				; locked cell
continue

if SolveHidato(Grid, Locked, Max, row, col, num, R, C)	; solve for current location, neighbor and value
return map(Grid)			; if solved, return solution
}
}
num--								; step back
for i, line in Grid
for j, element in line
if InStr(element, ">") && (StrReplace(element, ">") >= num)
Grid[i, j] := "Y"
}
;--------------------------------
;--------------------------------
;--------------------------------
Neighbor(row,col){
R := row-1
loop, 9
{
DeltaC := Mod(A_Index, 3) ? Mod(A_Index, 3)-2	: 1
res .= (R=row && !DeltaC) ? "" : R ":" col+DeltaC ","
R := Mod(A_Index, 3) ? R : R+1
}
return Trim(res, ",")
}
;--------------------------------
map(Grid){
for i, row in Grid
{
for j, element in row
line .= (A_Index > 1 ? "`t" : "") . element
map .= (map<>""?"`n":"") line
line := ""
}
return StrReplace(map, ">")
}
```

Examples:

```;--------------------------------
Grid := [[ "Y"	, 33	, 35	, "Y"	, "Y"]
,[ "Y"	, "Y"	, 24	, 22	, "Y"]
,[ "Y"	, "Y"	, "Y"	, 21	, "Y"	, "Y"]
,[ "Y"	, 26	, "Y"	, 13	, 40	, 11 ]
,[ 27	, "Y"	, "Y"	, "Y"	, 9	, "Y"	, 1  ]
,[ ""	, ""	, "Y"	, "Y"	, 18	, "Y"	, "Y"]
,[ ""	, ""	, ""	, ""	, "Y"	, 7	, "Y"	, "Y"]
,[ ""	, ""	, ""	, ""	, ""	, ""	, 5	, "Y"]]
;--------------------------------
; find locked cells, find row and col of first value "1" and max value
Locked := []
for i, line in Grid
for j, element in line
{
if element = 1
row :=i , col := j
if element is integer
Locked[element] := i ":" j "," Neighbor(i, j)	; save locked elements position and neighbors
, max := element > max ? element : max		; find max value
}
;--------------------------------
MsgBox, 262144, ,% SolveHidato(Grid, Locked, Max, row, col)
return
```

Outputs:

```32	33	35	36	37
31	34	24	22	38
30	25	23	21	12	39
29	26	20	13	40	11
27	28	14	19	9	10	1
15	16	18	8	2
17	7	6	3
5	4

```

## Bracmat

```(
( hidato
=     Line solve lowest Ncells row column rpad
, Board colWidth maxDigits start curCol curRow
, range head line cellN solution output tail
.   out\$!arg
& @(!arg:? ((%@:>" ") ?:?arg))
& 0:?row:?column
& :?Board
& ( Line
=   token
.   whl
' ( @(!arg:?token [3 ?arg)
& (   (   @(!token:? "_" ?)
& :?token
| @(!token:? #?token (|" " ?))
)
& (!token.!row.!column) !Board:?Board
|
)
& 1+!column:?column
)
)
&   whl
' ( @(!arg:?line \n ?arg)
& Line\$!line
& 1+!row:?row
& 0:?column
)
& Line\$!arg
& ( range
=   hi lo
.   (!arg+1:?hi)+-2:?lo
& '(\$lo|\$arg|\$hi)
)
& ( solve
=     ToDo cellN row column head tail remainder
, candCell Solved rowCand colCand pattern recurse
.   !arg:(?ToDo.?cellN.?row.?column)
& range\$!row:(=?row)
& range\$!column:(=?column)
&
& (!rowCand.!colCand):(\$row.\$column)
& !recurse
(.(\$row.\$column):(?rowCand.?colCand))
(?tail&!recurse)
.     ((!rowCand.!colCand).\$cellN)
: ?candCell
& out\$found!
& !candCell
|       solve
. \$cellN+1
. !rowCand
. !colCand
)
: ?remainder
& !candCell+!remainder
)
: ?Solved
)
: (=?pattern.?recurse)
& !ToDo:!pattern
& !Solved
)
& infinity:?lowest
& (   !Board
: ? (<!lowest:#%?lowest.?start) (?&~)
| solve\$(!Board.!lowest.!start):?solution
)
& :?output
& 0:?curCol
& !solution:((?curRow.?).?)+?+[?Ncells
& @(!Ncells:? [?maxDigits)
& 1+!maxDigits:?colWidth
=   len
.   !arg:(?arg.?len)
& @(str\$(!arg "    "):?arg [!len ?)
& !arg
)
&   whl
' ( !solution:((?row.?column).?cellN)+?solution
& (   !row:>!curRow:?curRow
& !output \n:?output
& 0:?curCol
|
)
&   whl
' ( !curCol+1:~>!column:?curCol
)
: ?output
& !curCol+1:?curCol
)
& str\$!output
)
&   "
__ 33 35 __ __
__ __ 24 22 __
__ __ __ 21 __ __
__ 26 __ 13 40 11
27 __ __ __  9 __  1
__ __ 18 __ __
__  7 __ __
5 __"
: ?board
& out\$(hidato\$!board)
);
```

Output:

```

__ 33 35 __ __
__ __ 24 22 __
__ __ __ 21 __ __
__ 26 __ 13 40 11
27 __ __ __  9 __  1
__ __ 18 __ __
__  7 __ __
5 __
found!
32 33 35 36 37
31 34 24 22 38
30 25 23 21 12 39
29 26 20 13 40 11
27 28 14 19  9 10  1
15 16 18  8  2
17  7  6  3
5  4
```

## C

Depth-first graph, with simple connectivity check to reject some impossible situations early. The checks slow down simpler puzzles significantly, but can make some deep recursions backtrack much earilier.

```#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

int *board, *flood, *known, top = 0, w, h;

static inline int idx(int y, int x) { return y * w + x; }

int neighbors(int c, int *p)
/*
@c cell
@p list of neighbours
@return amount of neighbours
*/
{
int i, j, n = 0;
int y = c / w, x = c % w;

for (i = y - 1; i <= y + 1; i++) {
if (i < 0 || i >= h) continue;
for (j = x - 1; j <= x + 1; j++)
if (!(j < 0 || j >= w
|| (j == x && i == y)
|| board[ p[n] = idx(i,j) ] == -1))
n++;
}

return n;
}

void flood_fill(int c)
/*
fill all free cells around @c with “1” and write output to variable “flood”
@c cell
*/
{
int i, n[8], nei;

nei = neighbors(c, n);
for (i = 0; i < nei; i++) { // for all neighbours
if (board[n[i]] || flood[n[i]]) continue; // if cell is not free, choose another neighbour

flood[n[i]] = 1;
flood_fill(n[i]);
}
}

/* Check all empty cells are reachable from higher known cells.
Should really do more checks to make sure cell_x and cell_x+1
share enough reachable empty cells; I'm lazy. Will implement
if a good counter example is presented. */
int check_connectity(int lowerbound)
{
int c;
memset(flood, 0, sizeof(flood[0]) * w * h);
for (c = lowerbound + 1; c <= top; c++)
if (known[c]) flood_fill(known[c]); // mark all free cells around known cells

for (c = 0; c < w * h; c++)
if (!board[c] && !flood[c]) // if there are free cells which could not be reached from flood_fill
return 0;

return 1;
}

void make_board(int x, int y, const char *s)
{
int i;

w = x, h = y;
top = 0;
x = w * h;

known = calloc(x + 1, sizeof(int));
board = calloc(x,     sizeof(int));
flood = calloc(x,     sizeof(int));

while (x--) board[x] = -1;

for (y = 0; y < h; y++)
for (x = 0; x < w; x++) {
i = idx(y, x);

while (isspace(*s)) s++;

switch (*s) {
case '_':	board[i] = 0;
case '.':	break;
default:
known[ board[i] = strtol(s, 0, 10) ] = i;
if (board[i] > top) top = board[i];
}

while (*s && !isspace(*s)) s++;
}
}

void show_board(const char *s)
{
int i, j, c;

printf("\n%s:\n", s);

for (i = 0; i < h; i++, putchar('\n'))
for (j = 0; j < w; j++) {
c = board[ idx(i, j) ];
printf(!c ? " __" : c == -1 ? "   " : " %2d", c);
}
}

int fill(int c, int n)
{
int i, nei, p[8], ko, bo;

if ((board[c] && board[c] != n) || (known[n] && known[n] != c))
return 0;

if (n == top) return 1;

ko = known[n];
bo = board[c];
board[c] = n;

if (check_connectity(n)) {
nei = neighbors(c, p);
for (i = 0; i < nei; i++)
if (fill(p[i], n + 1))
return 1;
}

board[c] = bo;
known[n] = ko;
return 0;
}

int main()
{
make_board(
#define USE_E 0
#if (USE_E == 0)
8,8,	" __ 33 35 __ __ .. .. .."
" __ __ 24 22 __ .. .. .."
" __ __ __ 21 __ __ .. .."
" __ 26 __ 13 40 11 .. .."
" 27 __ __ __  9 __  1 .."
" .   . __ __ 18 __ __ .."
" .  ..  .  . __  7 __ __"
" .  .. .. ..  .  .  5 __"
#elif (USE_E == 1)
3, 3,	" . 4 ."
" _ 7 _"
" 1 _ _"
#else
50, 3,
" 1 _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . 74"
" . . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ ."
" . . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ ."
#endif
);

show_board("Before");
fill(known[1], 1);
show_board("After"); /* "40 lbs in two weeks!" */

return 0;
}
```

{{out}}

``` Before:
__ 33 35 __ __
__ __ 24 22 __
__ __ __ 21 __ __
__ 26 __ 13 40 11
27 __ __ __  9 __  1
__ __ 18 __ __
__  7 __ __
5 __

After:
32 33 35 36 37
31 34 24 22 38
30 25 23 21 12 39
29 26 20 13 40 11
27 28 14 19  9 10  1
15 16 18  8  2
17  7  6  3
5  4
```

## C++

```
#include <iostream>
#include <sstream>
#include <iterator>
#include <vector>

//------------------------------------------------------------------------------
using namespace std;

//------------------------------------------------------------------------------
struct node
{
int val;
unsigned char neighbors;
};
//------------------------------------------------------------------------------
class hSolver
{
public:
hSolver()
{
dx[0] = -1; dx[1] = 0; dx[2] = 1; dx[3] = -1; dx[4] = 1; dx[5] = -1; dx[6] = 0; dx[7] = 1;
dy[0] = -1; dy[1] = -1; dy[2] = -1; dy[3] = 0; dy[4] = 0; dy[5] = 1; dy[6] = 1; dy[7] = 1;
}

void solve( vector<string>& puzz, int max_wid )
{
if( puzz.size() < 1 ) return;
wid = max_wid; hei = static_cast<int>( puzz.size() ) / wid;
int len = wid * hei, c = 0; max = 0;
arr = new node[len]; memset( arr, 0, len * sizeof( node ) );
weHave = new bool[len + 1]; memset( weHave, 0, len + 1 );

for( vector<string>::iterator i = puzz.begin(); i != puzz.end(); i++ )
{
if( ( *i ) == "*" ) {    arr[c++].val = -1; continue; }
arr[c].val = atoi( ( *i ).c_str() );
if( arr[c].val > 0 ) weHave[arr[c].val] = true;
if( max < arr[c].val ) max = arr[c].val;
c++;
}

solveIt(); c = 0;
for( vector<string>::iterator i = puzz.begin(); i != puzz.end(); i++ )
{
if( ( *i ) == "." )
{
ostringstream o; o << arr[c].val;
( *i ) = o.str();
}
c++;
}
delete [] arr;
delete [] weHave;
}

private:
bool search( int x, int y, int w )
{
if( w == max ) return true;

node* n = &arr[x + y * wid];
n->neighbors = getNeighbors( x, y );
if( weHave[w] )
{
for( int d = 0; d < 8; d++ )
{
if( n->neighbors & ( 1 << d ) )
{
int a = x + dx[d], b = y + dy[d];
if( arr[a + b * wid].val == w )
if( search( a, b, w + 1 ) ) return true;
}
}
return false;
}

for( int d = 0; d < 8; d++ )
{
if( n->neighbors & ( 1 << d ) )
{
int a = x + dx[d], b = y + dy[d];
if( arr[a + b * wid].val == 0 )
{
arr[a + b * wid].val = w;
if( search( a, b, w + 1 ) ) return true;
arr[a + b * wid].val = 0;
}
}
}
return false;
}

unsigned char getNeighbors( int x, int y )
{
unsigned char c = 0; int m = -1, a, b;
for( int yy = -1; yy < 2; yy++ )
for( int xx = -1; xx < 2; xx++ )
{
if( !yy && !xx ) continue;
m++; a = x + xx, b = y + yy;
if( a < 0 || b < 0 || a >= wid || b >= hei ) continue;
if( arr[a + b * wid].val > -1 ) c |= ( 1 << m );
}
return c;
}

void solveIt()
{
int x, y; findStart( x, y );
if( x < 0 ) { cout << "\nCan't find start point!\n"; return; }
search( x, y, 2 );
}

void findStart( int& x, int& y )
{
for( int b = 0; b < hei; b++ )
for( int a = 0; a < wid; a++ )
if( arr[a + wid * b].val == 1 ) { x = a; y = b; return; }
x = y = -1;
}

int wid, hei, max, dx[8], dy[8];
node* arr;
bool* weHave;
};
//------------------------------------------------------------------------------
int main( int argc, char* argv[] )
{
int wid;
string p = ". 33 35 . . * * * . . 24 22 . * * * . . . 21 . . * * . 26 . 13 40 11 * * 27 . . . 9 . 1 * * * . . 18 . . * * * * * . 7 . . * * * * * * 5 ."; wid = 8;
//string p = "54 . 60 59 . 67 . 69 . . 55 . . 63 65 . 72 71 51 50 56 62 . * * * * . . . 14 * * 17 . * 48 10 11 * 15 . 18 . 22 . 46 . * 3 . 19 23 . . 44 . 5 . 1 33 32 . . 43 7 . 36 . 27 . 31 42 . . 38 . 35 28 . 30"; wid = 9;
//string p = ". 58 . 60 . . 63 66 . 57 55 59 53 49 . 65 . 68 . 8 . . 50 . 46 45 . 10 6 . * * * . 43 70 . 11 12 * * * 72 71 . . 14 . * * * 30 39 . 15 3 17 . 28 29 . . 40 . . 19 22 . . 37 36 . 1 20 . 24 . 26 . 34 33"; wid = 9;

istringstream iss( p ); vector<string> puzz;
copy( istream_iterator<string>( iss ), istream_iterator<string>(), back_inserter<vector<string> >( puzz ) );
hSolver s; s.solve( puzz, wid );

int c = 0;
for( vector<string>::iterator i = puzz.begin(); i != puzz.end(); i++ )
{
if( ( *i ) != "*" && ( *i ) != "." )
{
if( atoi( ( *i ).c_str() ) < 10 ) cout << "0";
cout << ( *i ) << " ";
}
else cout << "   ";
if( ++c >= wid ) { cout << endl; c = 0; }
}
cout << endl << endl;
return system( "pause" );
}
//--------------------------------------------------------------------------------------------------

```

Output:

```
32 33 35 36 37
31 34 24 22 38
30 25 23 21 12 39
29 26 20 13 40 11
27 28 14 19 09 10 01
15 16 18 08 02
17 07 06 03
05 04

56 58 54 60 61 62 63 66 67
57 55 59 53 49 47 65 64 68
09 08 52 51 50 48 46 45 69
10 06 07          44 43 70
05 11 12          72 71 42
04 14 13          30 39 41
15 03 17 18 28 29 38 31 40
02 16 19 22 23 27 37 36 32
01 20 21 24 25 26 35 34 33

```

## C#

The same solver can solve Hidato, Holy Knight's Tour, Hopido and Numbrix puzzles.
The input can be an array of strings if each cell is one character. The length of the first row must be the number of columns in the puzzle.
Any non-numeric value indicates a no-go.
If there are cells that require more characters, then a 2-dimensional array of ints must be used. Any number < 0 indicates a no-go.
The puzzle can be made circular (the end cell must connect to the start cell). In that case, no start cell needs to be given.

```using System.Collections;
using System.Collections.Generic;
using static System.Console;
using static System.Math;
using static System.Linq.Enumerable;

public class Solver
{
private static readonly (int dx, int dy)[]
//other puzzle types elided
hidatoMoves = {(1,0),(1,1),(0,1),(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1)};

private (int dx, int dy)[] moves;

public static void Main()
{
Print(new Solver(hidatoMoves).Solve(false, new [,] {
{  0, 33, 35,  0,  0, -1, -1, -1 },
{  0,  0, 24, 22,  0, -1, -1, -1 },
{  0,  0,  0, 21,  0,  0, -1, -1 },
{  0, 26,  0, 13, 40, 11, -1, -1 },
{ 27,  0,  0,  0,  9,  0,  1, -1 },
{ -1, -1,  0,  0, 18,  0,  0, -1 },
{ -1, -1, -1, -1,  0,  7,  0,  0 },
{ -1, -1, -1, -1, -1, -1,  5,  0 }
}));
}

public Solver(params (int dx, int dy)[] moves) => this.moves = moves;

public int[,] Solve(bool circular, params string[] puzzle)
{
var (board, given, count) = Parse(puzzle);
return Solve(board, given, count, circular);
}

public int[,] Solve(bool circular, int[,] puzzle)
{
var (board, given, count) = Parse(puzzle);
return Solve(board, given, count, circular);
}

private int[,] Solve(int[,] board, BitArray given, int count, bool circular)
{
var (height, width) = (board.GetLength(0), board.GetLength(1));
bool solved = false;
for (int x = 0; x < height && !solved; x++) {
solved = Range(0, width).Any(y => Solve(board, given, circular, (height, width), (x, y), count, (x, y), 1));
if (solved) return board;
}
return null;
}

private bool Solve(int[,] board, BitArray given, bool circular,
(int h, int w) size, (int x, int y) start, int last, (int x, int y) current, int n)
{
var (x, y) = current;
if (x < 0 || x >= size.h || y < 0 || y >= size.w) return false;
if (board[x, y] < 0) return false;
if (given[n - 1]) {
if (board[x, y] != n) return false;
} else if (board[x, y] > 0) return false;
board[x, y] = n;
if (n == last) {
if (!circular || AreNeighbors(start, current)) return true;
}
for (int i = 0; i < moves.Length; i++) {
var move = moves[i];
if (Solve(board, given, circular, size, start, last, (x + move.dx, y + move.dy), n + 1)) return true;
}
if (!given[n - 1]) board[x, y] = 0;
return false;

bool AreNeighbors((int x, int y) p1, (int x, int y) p2) => moves.Any(m => (p2.x + m.dx, p2.y + m.dy).Equals(p1));
}

private static (int[,] board, BitArray given, int count) Parse(string[] input)
{
(int height, int width) = (input.Length, input[0].Length);
int[,] board = new int[height, width];
int count = 0;
for (int x = 0; x < height; x++) {
string line = input[x];
for (int y = 0; y < width; y++) {
board[x, y] = y < line.Length && char.IsDigit(line[y]) ? line[y] - '0' : -1;
if (board[x, y] >= 0) count++;
}
}
BitArray given = Scan(board, count, height, width);
return (board, given, count);
}

private static (int[,] board, BitArray given, int count) Parse(int[,] input)
{
(int height, int width) = (input.GetLength(0), input.GetLength(1));
int[,] board = new int[height, width];
int count = 0;
for (int x = 0; x < height; x++)
for (int y = 0; y < width; y++)
if ((board[x, y] = input[x, y]) >= 0) count++;
BitArray given = Scan(board, count, height, width);
return (board, given, count);
}

private static BitArray Scan(int[,] board, int count, int height, int width)
{
var given = new BitArray(count + 1);
for (int x = 0; x < height; x++)
for (int y = 0; y < width; y++)
if (board[x, y] > 0) given[board[x, y] - 1] = true;
return given;
}

private static void Print(int[,] board)
{
if (board == null) {
WriteLine("No solution");
} else {
int w = board.Cast<int>().Where(i => i > 0).Max(i => (int?)Ceiling(Log10(i+1))) ?? 1;
string e = new string('-', w);
foreach (int x in Range(0, board.GetLength(0)))
WriteLine(string.Join(" ", Range(0, board.GetLength(1))
.Select(y => board[x, y] < 0 ? e : board[x, y].ToString().PadLeft(w, ' '))));
}
WriteLine();
}

}
```

{{out}}

```
32 33 35 36 37 -- -- --
31 34 24 22 38 -- -- --
30 25 23 21 12 39 -- --
29 26 20 13 40 11 -- --
27 28 14 19  9 10  1 --
-- -- 15 16 18  8  2 --
-- -- -- -- 17  7  6  3
-- -- -- -- -- --  5  4

```

## Curry

{{Works with|PAKCS}} Probably not efficient.

```import CLPFD
import Constraint (andC, anyC)
import Findall (unpack)
import Integer (abs)

hidato :: [[Int]] -> Success
hidato path =
test path inner
& domain inner 1 40
& allDifferent inner
& andFD [x `near` y | x <- cells, y <- cells]
& labeling [] (concat path)
where
andFD = solve . foldr1 (#/\#)
cells = enumerate path
inner free

near :: (Int,Int,Int) -> (Int,Int,Int) -> Constraint
(x,rx,cx) `near` (y,ry,cy) =  x #<=# y  #/\#  dist (y -# x)
#\/#  x #>#  y  #/\#  dist (x -# y)
#\/#  x #=#  0
#\/#  y #=#  0
where
dist d =  abs (rx - ry) #<=# d
#/\#  abs (cx - cy) #<=# d

enumerate :: [[Int]] -> [(Int,Int,Int)]
enumerate xss = [(x,row,col) | (xs,row) <- xss `zip` [1..]
, (x ,col) <- xs  `zip` [1..]
]

test [[ 0,  0,  0,  0,  0,  0,  0, 0, 0, 0]
,[ 0,  A, 33, 35,  B,  C,  0, 0, 0, 0]
,[ 0,  D,  E, 24, 22,  F,  0, 0, 0, 0]
,[ 0,  G,  H,  I, 21,  J,  K, 0, 0, 0]
,[ 0,  L, 26,  M, 13, 40, 11, 0, 0, 0]
,[ 0, 27,  N,  O,  P,  9,  Q, 1, 0, 0]
,[ 0,  0,  0,  R,  S, 18,  T, U, 0, 0]
,[ 0,  0,  0,  0,  0,  V,  7, W, X, 0]
,[ 0,  0,  0,  0,  0,  0,  0, 5, Y, 0]
,[ 0,  0,  0,  0,  0,  0,  0, 0, 0, 0]
]
[ A, 33, 35,  B,  C
, D,  E, 24, 22,  F
, G,  H,  I, 21,  J,  K
, L, 26,  M, 13, 40, 11
, 27,  N,  O,  P,  9, Q, 1
,  R,  S, 18,  T,  U
,  V,  7,  W,  X
,  5,  Y
] = success

main = unpack hidato
```

{{Output}}

```Execution time: 1440 msec. / elapsed: 2270 msec.
[[0,0,0,0,0,0,0,0,0,0],[0,32,33,35,36,37,0,0,0,0],[0,31,34,24,22,38,0,0,0,0],[0,30,25,23,21,12,39,0,0,0],[0,29,26,20,13,40,11,0,0,0],[0,27,28,14,19,9,10,1,0,0],[0,0,0,15,16,18,8,2,0,0],[0,0,0,0,0,17,7,6,3,0],[0,0,0,0,0,0,0,5,4,0],[0,0,0,0,0,0,0,0,0,0]]
More values? [y(es)/N(o)/a(ll)]
```

## D

===More C-Style Version=== This version retains some of the characteristics of the original C version. It uses global variables, it doesn't enforce immutability and purity. This style is faster to write for prototypes, short programs or less important code, but in larger programs you usually want more strictness to avoid some bugs and increase long-term maintainability. {{trans|C}}

```import std.stdio, std.array, std.conv, std.algorithm, std.string;

int[][] board;
int[] given, start;

void setup(string s) {
auto lines = s.splitLines;
auto cols = lines[0].split.length;
auto rows = lines.length;
given.length = 0;

board = new int[][](rows + 2, cols + 2);
foreach (row; board)
row[] = -1;

foreach (r, row; lines) {
foreach (c, cell; row.split) {
switch (cell) {
case "__":
board[r + 1][c + 1] = 0;
break;
case ".":
break;
default:
int val = cell.to!int;
board[r + 1][c + 1] = val;
given ~= val;
if (val == 1)
start = [r + 1, c + 1];
}
}
}
given.sort();
}

bool solve(int r, int c, int n, int next = 0) {
if (n > given.back)
return true;

if (board[r][c] && board[r][c] != n)
return false;

if (board[r][c] == 0 && given[next] == n)
return false;

int back = board[r][c];

board[r][c] = n;
foreach (i; -1 .. 2)
foreach (j; -1 .. 2)
if (solve(r + i, c + j, n + 1, next + (back == n)))
return true;

board[r][c] = back;
return false;
}

void printBoard() {
foreach (row; board) {
foreach (c; row)
writef(c == -1 ? " . " : c ? "%2d " : "__ ", c);
writeln;
}
}

void main() {
auto hi = "__ 33 35 __ __  .  .  .
__ __ 24 22 __  .  .  .
__ __ __ 21 __ __  .  .
__ 26 __ 13 40 11  .  .
27 __ __ __  9 __  1  .
.  . __ __ 18 __ __  .
.  .  .  . __  7 __ __
.  .  .  .  .  .  5 __";

hi.setup;
printBoard;
"\nFound:".writeln;
solve(start[0], start[1], 1);
printBoard;
}
```

{{out}}

``` .  .  .  .  .  .  .  .  .  .
. __ 33 35 __ __  .  .  .  .
. __ __ 24 22 __  .  .  .  .
. __ __ __ 21 __ __  .  .  .
. __ 26 __ 13 40 11  .  .  .
. 27 __ __ __  9 __  1  .  .
.  .  . __ __ 18 __ __  .  .
.  .  .  .  . __  7 __ __  .
.  .  .  .  .  .  .  5 __  .
.  .  .  .  .  .  .  .  .  .

Found:
.  .  .  .  .  .  .  .  .  .
. 32 33 35 36 37  .  .  .  .
. 31 34 24 22 38  .  .  .  .
. 30 25 23 21 12 39  .  .  .
. 29 26 20 13 40 11  .  .  .
. 27 28 14 19  9 10  1  .  .
.  .  . 15 16 18  8  2  .  .
.  .  .  .  . 17  7  6  3  .
.  .  .  .  .  .  .  5  4  .
.  .  .  .  .  .  .  .  .  .
```

### Stronger Version

{{trans|C}} This version uses a little stronger typing, performs tests a run-time with contracts, it doesn't use global variables, it enforces immutability and purity where possible, and produces a correct text output for both larger ad small boards. This style is more fit for larger programs, or when you want the code to be less bug-prone or a little more efficient.

With this coding style the changes in the code become less bug-prone, but also more laborious. This version is also faster, its total runtime is about 0.02 seconds or less.

```import std.stdio, std.conv, std.ascii, std.array, std.string,
std.algorithm, std.exception, std.range, std.typetuple;

struct Hidato {
// alias Cell = RangedValue!(int, -1, int.max);
alias Cell = int;
alias Pos = size_t;
enum : Cell { emptyCell = -1, unknownCell = 0 }

immutable Cell boardMax;
immutable size_t nCols, nRows;
Cell[] board;
Pos[] known;
bool[] flood;

this(in string input) pure @safe
in {
assert(!input.strip.empty);
} out {
assert(nCols > 0 && nRows > 0);
immutable size = nCols * nRows;
assert(board.length == size);
assert(known.length == size + 1);
assert(flood.length == size);
assert(boardMax > 0 && boardMax <= size);
assert(board.reduce!max == boardMax);
assert(board.canFind(1) && board.canFind(boardMax));
assert(flood.all!(f => f == 0));
assert(known.all!(rc => rc >= 0 && rc < size));

foreach (immutable i, immutable cell; board) {
assert(cell == Hidato.emptyCell ||
cell == Hidato.unknownCell ||
(cell >= 1 && cell <= size));
if (cell > 0)
assert(i == known[size_t(cell)]);
}
} body {
bool[Cell] pathSeen; // A set.
immutable lines = input.splitLines;
this.nRows = lines.length;
this.nCols = lines[0].split.length;

immutable size = nCols * nRows;
this.board.length = size;
this.board[] = emptyCell;
this.known.length = size + 1;
this.flood.length = size;

auto boardMaxMutable = Cell.min;
Pos i = 0;

foreach (immutable row; lines) {
assert(row.split.length == nCols,
text("Wrong cols n.: ", row.split.length));

foreach (immutable cell; row.split) {
switch (cell) {
case "_":
this.board[i] = Hidato.unknownCell;
break;
case ".":
this.board[i] = Hidato.emptyCell;
break;
default: // Known.
immutable val = cell.to!Cell;
enforce(val > 0, "Path numbers must be > 0.");
enforce(val !in pathSeen,
text("Duplicated path number: ", val));
pathSeen[val] = true;
this.board[i] = val;
this.known[val] = i;
boardMaxMutable = max(boardMaxMutable, val);
}
i++;
}
}

this.boardMax = boardMaxMutable;
}

private Pos idx(in size_t r, in size_t c) const pure nothrow @safe @nogc {
return r * nCols + c;
}

private uint nNeighbors(in Pos pos, ref Pos[8] neighbours)
const pure nothrow @safe @nogc {
immutable r = pos / nCols;
immutable c = pos % nCols;
typeof(return) n = 0;

foreach (immutable sr; TypeTuple!(-1, 0, 1)) {
immutable size_t i = r + sr; // Can wrap-around.
if (i >= nRows)
continue;
foreach (immutable sc; TypeTuple!(-1, 0, 1)) {
immutable size_t j = c + sc; // Can wrap-around.
if ((sc != 0 || sr != 0) && j < nCols) {
immutable pos2 = idx(i, j);
neighbours[n] = pos2;
if (board[pos2] != Hidato.emptyCell)
n++;
}
}
}

return n;
}

/// Fill all free cells around 'cell' with true and write
/// output to variable "flood".
private void floodFill(in Pos pos) pure nothrow @safe @nogc {
Pos[8] n = void;

// For all neighbours.
foreach (immutable i; 0 .. nNeighbors(pos, n)) {
// If pos is not free, choose another neighbour.
if (board[n[i]] || flood[n[i]])
continue;
flood[n[i]] = true;
floodFill(n[i]);
}
}

/// Check all empty cells are reachable from higher known cells.
private bool checkConnectity(in uint lowerBound) pure nothrow @safe @nogc {
flood[] = false;

foreach (immutable i; lowerBound + 1 .. boardMax + 1)
if (known[i])
floodFill(known[i]);

foreach (immutable i; 0 .. nCols * nRows)
// If there are free cells which could not be
// reached from floodFill.
if (!board[i] && !flood[i])
return false;
return true;
}

private bool fill(in Pos pos, in uint n) pure nothrow @safe @nogc {
if ((board[pos] && board[pos] != n) ||
(known[n] && known[n] != pos))
return false;

if (n == boardMax)
return true;

immutable ko = known[n];
immutable bo = board[pos];
board[pos] = n;

Pos[8] p = void;
if (checkConnectity(n))
foreach (immutable i; 0 .. nNeighbors(pos, p))
if (fill(p[i], n + 1))
return true;

board[pos] = bo;
known[n] = ko;
return false;
}

void solve() pure nothrow @safe @nogc
in {
assert(!known.empty);
} body {
fill(known[1], 1);
}

string toString() const pure {
immutable d = [Hidato.emptyCell: ".",
Hidato.unknownCell: "_"];
immutable form = "%" ~ text(boardMax.text.length + 1) ~ "s";

string result;
foreach (immutable r; 0 .. nRows) {
foreach (immutable c; 0 .. nCols) {
immutable cell = board[idx(r, c)];
result ~= format(form, d.get(cell, cell.text));
}
result ~= "\n";
}
return result;
}
}

void solveHidato(in string problem) {
auto game = problem.Hidato;
writeln("Problem:\n", game);
game.solve;
writeln("Solution:\n", game);
}

void main() {
solveHidato(" _ 33 35  _  _  .  .  .
_  _ 24 22  _  .  .  .
_  _  _ 21  _  _  .  .
_ 26  _ 13 40 11  .  .
27  _  _  _  9  _  1  .
.  .  _  _ 18  _  _  .
.  .  .  .  _  7  _  _
.  .  .  .  .  .  5  _");

solveHidato(". 4 .
_ 7 _
1 _ _");

solveHidato(
"1 _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . 74
. . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ .
. . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ ."
);
}
```

{{out}}

```Problem:
_ 33 35  _  _  .  .  .
_  _ 24 22  _  .  .  .
_  _  _ 21  _  _  .  .
_ 26  _ 13 40 11  .  .
27  _  _  _  9  _  1  .
.  .  _  _ 18  _  _  .
.  .  .  .  _  7  _  _
.  .  .  .  .  .  5  _

Solution:
32 33 35 36 37  .  .  .
31 34 24 22 38  .  .  .
30 25 23 21 12 39  .  .
29 26 20 13 40 11  .  .
27 28 14 19  9 10  1  .
.  . 15 16 18  8  2  .
.  .  .  . 17  7  6  3
.  .  .  .  .  .  5  4

Problem:
. 4 .
_ 7 _
1 _ _

Solution:
. 4 .
3 7 5
1 2 6

Problem:
1  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  . 74
.  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .
.  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .

Solution:
1  2  3  .  .  8  9  .  . 14 15  .  . 20 21  .  . 26 27  .  . 32 33  .  . 38 39  .  . 44 45  .  . 50 51  .  . 56 57  .  . 62 63  .  . 68 69  .  . 74
.  .  4  .  7  . 10  . 13  . 16  . 19  . 22  . 25  . 28  . 31  . 34  . 37  . 40  . 43  . 46  . 49  . 52  . 55  . 58  . 61  . 64  . 67  . 70  . 73  .
.  .  .  5  6  .  . 11 12  .  . 17 18  .  . 23 24  .  . 29 30  .  . 35 36  .  . 41 42  .  . 47 48  .  . 53 54  .  . 59 60  .  . 65 66  .  . 71 72  .
```

## Elixir

{{trans|Ruby}}

```# Solve a Hidato Like Puzzle with Warnsdorff like logic applied
#
defmodule HLPsolver do
defmodule Cell do
defstruct value: -1, used: false, adj: []
end

board = setup(str)
if print_out, do: print(board, "Problem:")
{start, _} = Enum.find(board, fn {_,cell} -> cell.value==1 end)
zbl = for %Cell{value: n} <- Map.values(board), into: %{}, do: {n, true}
try do
solve(board, start, 1, zbl, map_size(board))
IO.puts "No solution"
catch
{:ok, result} -> if print_out, do: print(result, "Solution:"),
else: result
end
end

defp solve(board, position, seq_num, zbl, goal) do
value = board[position].value
cond do
value > 0 and value != seq_num -> nil
value == 0 and zbl[seq_num] -> nil
true ->
cell = %Cell{board[position] | value: seq_num, used: true}
board = %{board | position => cell}
if seq_num == goal, do: throw({:ok, board})
solve(board, pos, seq_num+1, zbl, goal)
end)
end
end

defp setup(str) do
lines = String.strip(str) |> String.split(~r/(\n|\r\n|\r)/) |> Enum.with_index
for {line,i} <- lines, {char,j} <- Enum.with_index(String.split(line)),
:error != Integer.parse(char), into: %{} do
{n,_} = Integer.parse(char)
{{i,j}, %Cell{value: n}}
end
end

Enum.reduce(Map.keys(board), board, fn {x,y},map ->
|> Enum.reduce([], fn pos,acc -> if board[pos], do: [pos | acc], else: acc end)
end)
end

defp wdof(board, adj) do              # Warnsdorf's rule
Enum.reject(adj, fn pos -> board[pos].used end)
|> Enum.sort_by(fn pos ->
Enum.count(board[pos].adj, fn p -> not board[p].used end)
end)
end

def print(board, title) do
IO.puts "\n#{title}"
{xmin, xmax} = Map.keys(board) |> Enum.map(fn {x,_} -> x end) |> Enum.min_max
{ymin, ymax} = Map.keys(board) |> Enum.map(fn {_,y} -> y end) |> Enum.min_max
len = map_size(board) |> to_char_list |> length
space = String.duplicate(" ", len)
Enum.each(xmin..xmax, fn x ->
Enum.map_join(ymin..ymax, " ", fn y ->
case Map.get(board, {x,y}) do
nil  -> space
cell -> to_string(cell.value) |> String.rjust(len)
end
end)
|> IO.puts
end)
end
end
```

'''Test:'''

```adjacent = [{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1, 1}]

"""
.  4
0  7  0
1  0  0
"""

"""
0 33 35  0  0
0  0 24 22  0
0  0  0 21  0  0
0 26  0 13 40 11
27  0  0  0  9  0  1
.  .  0  0 18  0  0
.  .  .  .  0  7  0  0
.  .  .  .  .  .  5  0
"""

"""
1  0  0  .  0  0  0  .  0  0  0  .  0  0  0  .  0  0  0  .  0  0  0  .  0  0  0
.  .  0  .  0  .  0  .  0  .  0  .  0  .  0  .  0  .  0  .  0  .  0  .  0  .  0
.  .  0  0  0  .  0  0  0  .  0  0  0  .  0  0  0  .  0  0  0  .  0  0  0  .  0
"""
```

{{out}}

```
Problem:
4
0 7 0
1 0 0

Solution:
4
3 7 5
1 2 6

Problem:
0 33 35  0  0
0  0 24 22  0
0  0  0 21  0  0
0 26  0 13 40 11
27  0  0  0  9  0  1
0  0 18  0  0
0  7  0  0
5  0

Solution:
32 33 35 36 37
31 34 24 22 38
30 25 23 21 12 39
29 26 20 13 40 11
27 28 14 19  9 10  1
15 16 18  8  2
17  7  6  3
5  4

Problem:
1  0  0     0  0  0     0  0  0     0  0  0     0  0  0     0  0  0     0  0  0
0     0     0     0     0     0     0     0     0     0     0     0     0
0  0  0     0  0  0     0  0  0     0  0  0     0  0  0     0  0  0     0

Solution:
1  2  3     9 10 11    17 18 19    25 26 27    33 34 35    41 42 43    49 50 51
4     8    12    16    20    24    28    32    36    40    44    48    52
5  6  7    13 14 15    21 22 23    29 30 31    37 38 39    45 46 47    53

```

## Erlang

To simplify the code I start a new process for searching each potential path through the grid. This means that the default maximum number of processes had to be raised ("erl +P 50000" works for me). The task takes about 1-2 seconds on a low level Mac mini. If faster times are needed, or even less performing hardware is used, some optimisation should be done.

```
-module( solve_hidato_puzzle ).

-compile({no_auto_import,[max/2]}).

create( Grid_list, Number_list ) ->
Squares = lists:flatten( [create_column(X, Y) || {X, Y} <- Grid_list] ),
lists:foldl( fun store/2, dict:from_list(Squares), Number_list ).

print( Grid_list ) when is_list(Grid_list) -> print( create(Grid_list, []) );
print( Grid_dict ) ->
Max_x = max_x( Grid_dict ),
Max_y = max_y( Grid_dict ),
Print_row = fun (Y) -> [print(X, Y, Grid_dict) || X <- lists:seq(1, Max_x)], io:nl() end,
[Print_row(Y) || Y <- lists:seq(1, Max_y)].

solve( Dict ) ->
{find_start, [Start]} = {find_start, dict:fold( fun start/3, [], Dict )},
Max = dict:size( Dict ),
{stop_ok, {Max, Max, [Stop]}} = {stop_ok, dict:fold( fun stop/3, {Max, 0, []}, Dict )},
My_pid = erlang:self(),
erlang:spawn( fun() -> path(Start, Stop, Dict, My_pid, []) end ),
{grid, Grid, path, Path} -> {Grid, Path}
end.

%% Square is {X, Y}, N}. N = 0 for empty square. These are created if not present.
%% Leftmost column is X=1. Top row is Y=1.
%% Optimised for the example, grid is a list of {X, {Y_min, Y_max}}.
%% When there are holes, X is repeated as many times as needed with two new Y values each time.
Start = {{7,5}, 1},
Stop = {{5,4}, 40},
Grid_list = [{1, {1,5}}, {2, {1,5}}, {3, {1,6}}, {4, {1,6}}, {5, {1,7}}, {6, {3,7}}, {7, {5,8}}, {8, {7,8}}],
Number_list = [Start, Stop, {{1,5}, 27}, {{2,1}, 33}, {{2,4}, 26}, {{3,1}, 35}, {{3,2}, 24},
{{4,2}, 22}, {{4,3}, 21}, {{4,4}, 13}, {{5,5}, 9}, {{5,6}, 18}, {{6,4}, 11}, {{6,7}, 7}, {{7,8}, 5}],
Grid = create( Grid_list, Number_list ),
io:fwrite( "Start grid~n" ),
print( Grid ),
{New_grid, Path} = solve( create(Grid_list, Number_list) ),
io:fwrite( "Start square ~p, Stop square ~p.~nPath ~p~n", [Start, Stop, Path] ),
print( New_grid ).

create_column( X, {Y_min, Y_max} ) -> [{{X, Y}, 0} || Y <- lists:seq(Y_min, Y_max)].

is_filled( Dict ) -> [] =:= dict:fold( fun keep_0_square/3, [], Dict ).

keep_0_square( Key, 0, Acc ) -> [Key | Acc];
keep_0_square(  _Key, _Value, Acc ) -> Acc.

max( Position, Keys ) ->
[Square | _T] = lists:reverse( lists:keysort(Position, Keys) ),
Square.

max_x( Dict ) ->
{X, _Y} = max( 1, dict:fetch_keys(Dict) ),
X.

max_y( Dict ) ->
{_X, Y} = max( 2, dict:fetch_keys(Dict) ),
Y.

neighbourhood( Square, Dict ) ->
Potentials = neighbourhood_potential_squares( Square ),
neighbourhood_squares( dict:find(Square, Dict), Potentials, Dict ).

neighbourhood_potential_squares( {X, Y} ) -> [{Sx, Sy} || Sx <- [X-1, X, X+1], Sy <- [Y-1, Y, Y+1], {X, Y} =/= {Sx, Sy}].

neighbourhood_squares( {ok, Value}, Potentials, Dict ) ->
Square_values = lists:flatten( [neighbourhood_square_value(X, dict:find(X, Dict)) || X <- Potentials] ),
Next_value = Value + 1,
neighbourhood_squares_next_value( lists:keyfind(Next_value, 2, Square_values), Square_values, Next_value ).

neighbourhood_squares_next_value( {Square, Value}, _Square_values, Value ) -> [{Square, Value}];
neighbourhood_squares_next_value( false, Square_values, Value ) -> [{Square, Value} || {Square, Y} <- Square_values, Y =:= 0].

neighbourhood_square_value( Square, {ok, Value} ) -> [{Square, Value}];
neighbourhood_square_value( _Square, error ) -> [].

path( Square, Square, Dict, Pid, Path ) -> path_correct( is_filled(Dict), Pid, [Square | Path], Dict );
path( Square, Stop, Dict, Pid, Path ) ->
Reversed_path = [Square | Path],
Neighbours = neighbourhood( Square, Dict ),
[erlang:spawn( fun() -> path(Next_square, Stop, dict:store(Next_square, Value, Dict), Pid, Reversed_path) end ) || {Next_square, Value} <- Neighbours].

path_correct( true, Pid, Path, Dict ) -> Pid ! {grid, Dict, path, lists:reverse( Path )};
path_correct( false, _Pid, _Path, _Dict ) -> dead_end.

print( X, Y, Dict ) -> print_number( dict:find({X, Y}, Dict) ).

print_number( {ok, 0} ) -> io:fwrite( "~3s", ["."] ); % . is less distracting than 0
print_number( {ok, Value} ) -> io:fwrite( "~3b", [Value] );
print_number( error ) -> io:fwrite( "~3s", [" "] ).

start( Key, 1, Acc ) -> [Key | Acc]; % Allow check that we only have one key with value 1.
start( _Key, _Value, Acc ) -> Acc.

stop( Key, Max, {Max, Max_found, Stops} ) -> {Max, erlang:max(Max, Max_found), [Key | Stops]}; % Allow check that we only have one key with value Max.
stop( _Key, Value, {Max, Max_found, Stops} ) -> {Max, erlang:max(Value, Max_found), Stops}. % Allow check that Max is Max.

store( {Key, Value}, Dict ) -> dict:store( Key, Value, Dict ).

```

{{out}}

```
Start grid
. 33 35  .  .
.  . 24 22  .
.  .  . 21  .  .
. 26  . 13 40 11
27  .  .  .  9  .  1
.  . 18  .  .
.  7  .  .
5  .
Start square {{7,5},1}, Stop square {{5,4},40}.
Path [{7,5}, {7,6}, {8,7}, {8,8}, {7,8}, {7,7}, {6,7}, {6,6}, {5,5}, {6,5}, {6,4}, {5,3}, {4,4}, {3,5}, {3,6}, {4,6}, {5,7}, {5,6}, {4,5}, {3,4},
{4,3}, {4,2}, {3,3}, {3,2}, {2,3}, {2,4}, {1,5},{2,5}, {1,4}, {1,3}, {1,2}, {1,1}, {2,1}, {2,2}, {3,1}, {4,1}, {5,1}, {5,2}, {6,3}, {5,4}]
32 33 35 36 37
31 34 24 22 38
30 25 23 21 12 39
29 26 20 13 40 11
27 28 14 19  9 10  1
15 16 18  8  2
17  7  6  3
5  4

```

## Go

{{trans|Java}}

```package main

import (
"fmt"
"sort"
"strconv"
"strings"
)

var board [][]int
var start, given []int

func setup(input []string) {
we're going to trust the input to be valid */
puzzle := make([][]string, len(input))
for i := 0; i < len(input); i++ {
puzzle[i] = strings.Fields(input[i])
}
nCols := len(puzzle[0])
nRows := len(puzzle)
list := make([]int, nRows*nCols)
board = make([][]int, nRows+2)
for i := 0; i < nRows+2; i++ {
board[i] = make([]int, nCols+2)
for j := 0; j < nCols+2; j++ {
board[i][j] = -1
}
}
for r := 0; r < nRows; r++ {
row := puzzle[r]
for c := 0; c < nCols; c++ {
switch cell := row[c]; cell {
case "_":
board[r+1][c+1] = 0
case ".":
break
default:
val, _ := strconv.Atoi(cell)
board[r+1][c+1] = val
list = append(list, val)
if val == 1 {
start = append(start, r+1, c+1)
}
}
}
}
sort.Ints(list)
given = make([]int, len(list))
for i := 0; i < len(given); i++ {
given[i] = list[i]
}
}

func solve(r, c, n, next int) bool {
if n > given[len(given)-1] {
return true
}

back := board[r][c]
if back != 0 && back != n {
return false
}

if back == 0 && given[next] == n {
return false
}

if back == n {
next++
}

board[r][c] = n
for i := -1; i < 2; i++ {
for j := -1; j < 2; j++ {
if solve(r+i, c+j, n+1, next) {
return true
}
}
}

board[r][c] = back
return false
}

func printBoard() {
for _, row := range board {
for _, c := range row {
switch {
case c == -1:
fmt.Print(" . ")
case c > 0:
fmt.Printf("%2d ", c)
default:
fmt.Print("__ ")
}
}
fmt.Println()
}
}

func main() {
input := []string{
"_ 33 35 _ _ . . .",
"_ _ 24 22 _ . . .",
"_ _ _ 21 _ _ . .",
"_ 26 _ 13 40 11 . .",
"27 _ _ _ 9 _ 1 .",
". . _ _ 18 _ _ .",
". . . . _ 7 _ _",
". . . . . . 5 _",
}
setup(input)
printBoard()
fmt.Println("\nFound:")
solve(start[0], start[1], 1, 0)
printBoard()
}
```

{{out}}

```
.  .  .  .  .  .  .  .  .  .
. __ 33 35 __ __  .  .  .  .
. __ __ 24 22 __  .  .  .  .
. __ __ __ 21 __ __  .  .  .
. __ 26 __ 13 40 11  .  .  .
. 27 __ __ __  9 __  1  .  .
.  .  . __ __ 18 __ __  .  .
.  .  .  .  . __  7 __ __  .
.  .  .  .  .  .  .  5 __  .
.  .  .  .  .  .  .  .  .  .

Found:
.  .  .  .  .  .  .  .  .  .
. 32 33 35 36 37  .  .  .  .
. 31 34 24 22 38  .  .  .  .
. 30 25 23 21 12 39  .  .  .
. 29 26 20 13 40 11  .  .  .
. 27 28 14 19  9 10  1  .  .
.  .  . 15 16 18  8  2  .  .
.  .  .  .  . 17  7  6  3  .
.  .  .  .  .  .  .  5  4  .
.  .  .  .  .  .  .  .  .  .

```

```{-# LANGUAGE TupleSections #-}
{-# LANGUAGE Rank2Types #-}

import qualified Data.IntMap as I
import Data.IntMap (IntMap)
import Data.List
import Data.Maybe
import Data.Time.Clock

data BoardProblem = Board
{ cells :: IntMap (IntMap Int)
, endVal :: Int
, onePos :: (Int, Int)
, givens :: [Int]
} deriving (Show, Eq)

tupIns x y v m = I.insert x (I.insert y v (I.findWithDefault I.empty x m)) m

tupLookup x y m = I.lookup x m >>= I.lookup y

makeBoard =
(\x ->
x
{ givens = dropWhile (<= 1) \$ sort \$ givens x
}) .
foldl' --'
f
(Board I.empty 0 (0, 0) []) .
concatMap (zip [0 ..]) . zipWith (\y w -> map (y, ) \$ words w) [0 ..]
where
f bd (x, (y, v)) =
if v == "."
then bd
else Board
(tupIns x y (read v) (cells bd))
(if read v > endVal bd
else endVal bd)
(if v == "1"
then (x, y)
else onePos bd)

hidato brd = listToMaybe \$ h 2 (cells brd) (onePos brd) (givens brd)
where
h nval pmap (x, y) gs
| nval == endVal brd = [pmap]
| nval == head gs =
then []
else h (nval + 1) pmap (fst \$ head nvalAdj) (tail gs)
where
around =
[ (x - 1, y - 1)
, (x, y - 1)
, (x + 1, y - 1)
, (x - 1, y)
, (x + 1, y)
, (x - 1, y + 1)
, (x, y + 1)
, (x + 1, y + 1)
]
lkdUp = map (\(x, y) -> ((x, y), tupLookup x y pmap)) around
nvalAdj = filter ((== Just nval) . snd) lkdUp
concatMap
(\((nx, ny), _) -> h (nval + 1) (tupIns nx ny nval pmap) (nx, ny) gs) \$
filter ((== Just 0) . snd) lkdUp

printCellMap cellmap = putStrLn \$ concat strings
where
maxPos = xyBy I.findMax maximum
minPos = xyBy I.findMin minimum
xyBy :: (forall a. IntMap a -> (Int, a)) -> ([Int] -> Int) -> (Int, Int)
xyBy a b = (fst (a cellmap), b \$ map (fst . a . snd) \$ I.toList cellmap)
strings =
map
f
[ (x, y)
| y <- [snd minPos .. snd maxPos]
, x <- [fst minPos .. fst maxPos] ]
f (x, y) =
let z =
if x == fst maxPos
then "\n"
else " "
in case tupLookup x y cellmap of
Nothing -> "  " ++ z
Just n ->
(if n < 10
then ' ' : show n
else show n) ++
z

main = do
let sampleBoard = makeBoard sample
printCellMap \$ cells sampleBoard
printCellMap \$ fromJust \$ hidato sampleBoard

sample =
[ " 0 33 35  0  0"
, " 0  0 24 22  0"
, " 0  0  0 21  0  0"
, " 0 26  0 13 40 11"
, "27  0  0  0  9  0  1"
, ".  .   0  0 18  0  0"
, ".  .  .  .   0  7  0  0"
, ".  .  .  .  .  .   5  0"
]
```

{{Out}}

``` 0 33 35  0  0
0  0 24 22  0
0  0  0 21  0  0
0 26  0 13 40 11
27  0  0  0  9  0  1
0  0 18  0  0
0  7  0  0
5  0

32 33 35 36 37
31 34 24 22 38
30 25 23 21 12 39
29 26 20 13 40 11
27 28 14 19  9 10  1
15 16 18  8  2
17  7  6  3
5  4

```

This is an Unicon-specific solution but could easily be adjusted to work in Icon.

```global nCells, cMap, best
record Pos(r,c)

procedure main(A)
QMouse(puzzle,findStart(puzzle),&null,0)
showPuzzle("Output", solvePuzzle(puzzle)) | write("No solution!")
end

p := [[-1]]
nCells := maxCols := 0
every line := !&input do {
put(p,[: -1 | gencells(line) | -1 :])
maxCols <:= *p[-1]
}
put(p, [-1])
# Now normalize all rows to the same length
every i := 1 to *p do p[i] := [: !p[i] | (|-1\(maxCols - *p[i])) :]
return p
end

procedure gencells(s)
static WS, NWS
initial {
NWS := ~(WS := " \t")
cMap := table()     # Map to/from internal model
cMap["#"] := -1;  cMap["_"] :=  0
cMap[-1]  := " "; cMap[0]   := "_"
}

s ? while not pos(0) do {
w := (tab(many(WS))|"", tab(many(NWS))) | break
w := numeric(\cMap[w]|w)
if -1 ~= w then nCells +:= 1
suspend w
}
end

procedure showPuzzle(label, p)
write(label," with ",nCells," cells:")
every r := !p do {
every c := !r do writes(right((\cMap[c]|c),*nCells+1))
write()
}
return p
end

procedure findStart(p)
if \p[r := !*p][c := !*p[r]] = 1 then return Pos(r,c)
end

procedure solvePuzzle(puzzle)
if path := \best then {
repeat {
loc := path.getLoc()
puzzle[loc.r][loc.c] := path.getVal()
path := \path.getParent() | break
}
return puzzle
}
end

class QMouse(puzzle, loc, parent, val)
method getVal(); return val; end
method getLoc(); return loc; end
method getParent(); return parent; end
method atEnd(); return (nCells = val) = puzzle[loc.r][loc.c]; end
method goNorth(); return visit(loc.r-1,loc.c);   end
method goNE();    return visit(loc.r-1,loc.c+1); end
method goEast();  return visit(loc.r,  loc.c+1); end
method goSE();    return visit(loc.r+1,loc.c+1); end
method goSouth(); return visit(loc.r+1,loc.c);   end
method goSW();    return visit(loc.r+1,loc.c-1); end
method goWest();  return visit(loc.r,  loc.c-1); end
method goNW();    return visit(loc.r-1,loc.c-1); end

method visit(r,c)
if /best & validPos(r,c) then return Pos(r,c)
end

method validPos(r,c)
xv := puzzle[r][c]
if xv = (val+1) then return
if xv = 0 then {  # make sure this path hasn't already gone there
ancestor := self
while xl := (ancestor := \ancestor.getParent()).getLoc() do
if (xl.r = r) & (xl.c = c) then fail
return
}
end

initially
val +:= 1
if atEnd() then return best := self
QMouse(puzzle, goNorth(), self, val)
QMouse(puzzle, goNE(),    self, val)
QMouse(puzzle, goEast(),  self, val)
QMouse(puzzle, goSE(),    self, val)
QMouse(puzzle, goSouth(), self, val)
QMouse(puzzle, goSW(),    self, val)
QMouse(puzzle, goWest(),  self, val)
QMouse(puzzle, goNW(),    self, val)
end
```

Sample run:

```
->hd <hd.in
Input with 40 cells:

_ 33 35  _  _
_  _ 24 22  _
_  _  _ 21  _  _
_ 26  _ 13 40 11
27  _  _  _  9  _  1
_  _ 18  _  _
_  7  _  _
5  _

Output with 40 cells:

32 33 35 36 37
31 34 24 22 38
30 25 23 21 12 39
29 26 20 13 40 11
27 28 14 19  9 10  1
15 16 18  8  2
17  7  6  3
5  4

->

```

## Java

{{trans|D}} {{works with|Java|7}}

```import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class Hidato {

private static int[][] board;
private static int[] given, start;

public static void main(String[] args) {
String[] input = {"_ 33 35 _ _ . . .",
"_ _ 24 22 _ . . .",
"_ _ _ 21 _ _ . .",
"_ 26 _ 13 40 11 . .",
"27 _ _ _ 9 _ 1 .",
". . _ _ 18 _ _ .",
". . . . _ 7 _ _",
". . . . . . 5 _"};

setup(input);
printBoard();
System.out.println("\nFound:");
solve(start[0], start[1], 1, 0);
printBoard();
}

private static void setup(String[] input) {
we're going to trust the input to be valid */

String[][] puzzle = new String[input.length][];
for (int i = 0; i < input.length; i++)
puzzle[i] = input[i].split(" ");

int nCols = puzzle[0].length;
int nRows = puzzle.length;

List<Integer> list = new ArrayList<>(nRows * nCols);

board = new int[nRows + 2][nCols + 2];
for (int[] row : board)
for (int c = 0; c < nCols + 2; c++)
row[c] = -1;

for (int r = 0; r < nRows; r++) {
String[] row = puzzle[r];
for (int c = 0; c < nCols; c++) {
String cell = row[c];
switch (cell) {
case "_":
board[r + 1][c + 1] = 0;
break;
case ".":
break;
default:
int val = Integer.parseInt(cell);
board[r + 1][c + 1] = val;
if (val == 1)
start = new int[]{r + 1, c + 1};
}
}
}
Collections.sort(list);
given = new int[list.size()];
for (int i = 0; i < given.length; i++)
given[i] = list.get(i);
}

private static boolean solve(int r, int c, int n, int next) {
if (n > given[given.length - 1])
return true;

if (board[r][c] != 0 && board[r][c] != n)
return false;

if (board[r][c] == 0 && given[next] == n)
return false;

int back = board[r][c];
if (back == n)
next++;

board[r][c] = n;
for (int i = -1; i < 2; i++)
for (int j = -1; j < 2; j++)
if (solve(r + i, c + j, n + 1, next))
return true;

board[r][c] = back;
return false;
}

private static void printBoard() {
for (int[] row : board) {
for (int c : row) {
if (c == -1)
System.out.print(" . ");
else
System.out.printf(c > 0 ? "%2d " : "__ ", c);
}
System.out.println();
}
}
}
```

Output:

``` .  .  .  .  .  .  .  .  .  .
. __ 33 35 __ __  .  .  .  .
. __ __ 24 22 __  .  .  .  .
. __ __ __ 21 __ __  .  .  .
. __ 26 __ 13 40 11  .  .  .
. 27 __ __ __  9 __  1  .  .
.  .  . __ __ 18 __ __  .  .
.  .  .  .  . __  7 __ __  .
.  .  .  .  .  .  .  5 __  .
.  .  .  .  .  .  .  .  .  .

Found:
.  .  .  .  .  .  .  .  .  .
. 32 33 35 36 37  .  .  .  .
. 31 34 24 22 38  .  .  .  .
. 30 25 23 21 12 39  .  .  .
. 29 26 20 13 40 11  .  .  .
. 27 28 14 19  9 10  1  .  .
.  .  . 15 16 18  8  2  .  .
.  .  .  .  . 17  7  6  3  .
.  .  .  .  .  .  .  5  4  .
.  .  .  .  .  .  .  .  .  .
```

## Julia

This solution utilizes a Hidato puzzle solver module which is also used for the Hopido and knight move tasks.

```module Hidato

export hidatosolve, printboard, hidatoconfigure

function hidatoconfigure(str)
lines = split(str, "\n")
nrows, ncols = length(lines), length(split(lines[1], r"\s+"))
board = fill(-1, (nrows, ncols))
presets = Vector{Int}()
starts = Vector{CartesianIndex{2}}()
maxmoves = 0
for (i, line) in enumerate(lines), (j, s) in enumerate(split(strip(line), r"\s+"))
c = s[1]
if c == '_' || (c == '0' && length(s) == 1)
board[i, j] = 0
maxmoves += 1
elseif c == '.'
continue
else # numeral, get 2 digits
board[i, j] = parse(Int, s)
push!(presets, board[i, j])
if board[i, j] == 1
push!(starts, CartesianIndex(i, j))
end
maxmoves += 1
end
end
board, maxmoves, sort!(presets), length(starts) == 1 ? starts : findall(x -> x == 0, board)
end

function hidatosolve(board, maxmoves, movematrix, fixed, row, col, sought)
if sought > maxmoves
return true
elseif (0 != board[row, col] != sought) || (board[row, col] == 0 && sought in fixed)
return false
end
backnum = board[row, col] == sought ? sought : 0
board[row, col] = sought # try board with this cell set to next number
for move in movematrix
i, j = row + move[1], col + move[2]
if (0 < i <= size(board)[1]) && (0 < j <= size(board)[2]) &&
hidatosolve(board, maxmoves, movematrix, fixed, i, j, sought + 1)
return true
end
end
board[row, col] = backnum # return board to original state
false
end

function printboard(board, emptysquare= "__ ", blocked = "   ")
d = Dict(-1 => blocked, 0 => emptysquare, -2 => "\n")
println(join([d[i] for i in hcat(board, fill(-2, size(board)[1]))'], ""))
end

end  # module

```
```using .Hidato

hidat = """
__ 33 35 __ __  .  .  .
__ __ 24 22 __  .  .  .
__ __ __ 21 __ __  .  .
__ 26 __ 13 40 11  .  .
27 __ __ __  9 __  1  .
.  . __ __ 18 __ __  .
.  .  .  . __  7 __ __
.  .  .  .  .  .  5 __"""

const kingmoves = [[-1, -1], [-1, 0], [-1, 1], [0, -1], [0, 1], [1, -1], [1, 0], [1, 1]]

board, maxmoves, fixed, starts = hidatoconfigure(hidat)
printboard(board)
hidatosolve(board, maxmoves, kingmoves, fixed, starts[1][1], starts[1][2], 1)
printboard(board)

```

{{output}}

```
__ 33 35 __ __
__ __ 24 22 __
__ __ __ 21 __ __
__ 26 __ 13 40 11
27 __ __ __  9 __  1
__ __ 18 __ __
__  7 __ __
5 __

32 33 35 36 37
31 34 24 22 38
30 25 23 21 12 39
29 26 20 13 40 11
27 28 14 19  9 10  1
15 16 18  8  2
17  7  6  3
5  4

```

## Kotlin

{{trans|Java}}

```// version 1.2.0

lateinit var board: List<IntArray>
lateinit var given: IntArray
lateinit var start: IntArray

fun setUp(input: List<String>) {
val nRows = input.size
val puzzle = List(nRows) { input[it].split(" ") }
val nCols = puzzle[0].size
val list = mutableListOf<Int>()
board = List(nRows + 2) { IntArray(nCols + 2) { -1 } }
for (r in 0 until nRows) {
val row = puzzle[r]
for (c in 0 until nCols) {
val cell = row[c]
if (cell == "_") {
board[r + 1][c + 1] = 0
}
else if (cell != ".") {
val value = cell.toInt()
board[r + 1][c + 1] = value
if (value == 1) start = intArrayOf(r + 1, c + 1)
}
}
}
list.sort()
given = list.toIntArray()
}

fun solve(r: Int, c: Int, n: Int, next: Int): Boolean {
if (n > given[given.lastIndex]) return true
val back = board[r][c]
if (back != 0 && back != n) return false
if (back == 0 && given[next] == n) return false
var next2 = next
if (back == n) next2++
board[r][c] = n
for (i in -1..1)
for (j in -1..1)
if (solve(r + i, c + j, n + 1, next2)) return true
board[r][c] = back
return false
}

fun printBoard() {
for (row in board) {
for (c in row) {
if (c == -1)
print(" . ")
else
print(if (c > 0) "%2d ".format(c) else "__ ")
}
println()
}
}

fun main(args: Array<String>) {
var input = listOf(
"_ 33 35 _ _ . . .",
"_ _ 24 22 _ . . .",
"_ _ _ 21 _ _ . .",
"_ 26 _ 13 40 11 . .",
"27 _ _ _ 9 _ 1 .",
". . _ _ 18 _ _ .",
". . . . _ 7 _ _",
". . . . . . 5 _"
)
setUp(input)
printBoard()
println("\nFound:")
solve(start[0], start[1], 1, 0)
printBoard()
}
```

{{out}}

```
.  .  .  .  .  .  .  .  .  .
. __ 33 35 __ __  .  .  .  .
. __ __ 24 22 __  .  .  .  .
. __ __ __ 21 __ __  .  .  .
. __ 26 __ 13 40 11  .  .  .
. 27 __ __ __  9 __  1  .  .
.  .  . __ __ 18 __ __  .  .
.  .  .  .  . __  7 __ __  .
.  .  .  .  .  .  .  5 __  .
.  .  .  .  .  .  .  .  .  .

Found:
.  .  .  .  .  .  .  .  .  .
. 32 33 35 36 37  .  .  .  .
. 31 34 24 22 38  .  .  .  .
. 30 25 23 21 12 39  .  .  .
. 29 26 20 13 40 11  .  .  .
. 27 28 14 19  9 10  1  .  .
.  .  . 15 16 18  8  2  .  .
.  .  .  .  . 17  7  6  3  .
.  .  .  .  .  .  .  5  4  .
.  .  .  .  .  .  .  .  .  .

```

## Mathprog

```/*Hidato.mathprog, part of KuKu by Nigel Galloway

Find a solution to a Hidato problem

Nigel_Galloway@operamail.com
April 1st., 2011
*/

param ZBLS;
param ROWS;
param COLS;
param D := 1;
set ROWSR := 1..ROWS;
set COLSR := 1..COLS;
set ROWSV := (1-D)..(ROWS+D);
set COLSV := (1-D)..(COLS+D);
param Iz{ROWSR,COLSR}, integer, default 0;
set ZBLSV := 1..(ZBLS+1);
set ZBLSR := 1..ZBLS;

var BR{ROWSV,COLSV,ZBLSV}, binary;

void0{r in ROWSV, z in ZBLSR,c in (1-D)..0}: BR[r,c,z] = 0;
void1{r in ROWSV, z in ZBLSR,c in (COLS+1)..(COLS+D)}: BR[r,c,z] = 0;
void2{c in COLSV, z in ZBLSR,r in (1-D)..0}: BR[r,c,z] = 0;
void3{c in COLSV, z in ZBLSR,r in (ROWS+1)..(ROWS+D)}: BR[r,c,z] = 0;
void4{r in ROWSV,c in (1-D)..0}: BR[r,c,ZBLS+1] = 1;
void5{r in ROWSV,c in (COLS+1)..(COLS+D)}: BR[r,c,ZBLS+1] = 1;
void6{c in COLSV,r in (1-D)..0}: BR[r,c,ZBLS+1] = 1;
void7{c in COLSV,r in (ROWS+1)..(ROWS+D)}: BR[r,c,ZBLS+1] = 1;

Izfree{r in ROWSR, c in COLSR, z in ZBLSR : Iz[r,c] = -1}: BR[r,c,z] = 0;
Iz1{Izr in ROWSR, Izc in COLSR, r in ROWSR, c in COLSR, z in ZBLSR : Izr=r and Izc=c and Iz[Izr,Izc]=z}: BR[r,c,z] = 1;

rule1{z in ZBLSR}: sum{r in ROWSR, c in COLSR} BR[r,c,z] = 1;
rule2{r in ROWSR, c in COLSR}: sum{z in ZBLSV} BR[r,c,z] = 1;
rule3{r in ROWSR, c in COLSR, z in ZBLSR}: BR[0,0,z+1] + BR[r-1,c-1,z+1] + BR[r-1,c,z+1] + BR[r-1,c+1,z+1] + BR[r,c-1,z+1] + BR[r,c+1,z+1] + BR[r+1,c-1,z+1] + BR[r+1,c,z+1] + BR[r+1,c+1,z+1] - BR[r,c,z] >= 0;

solve;

for {r in ROWSR} {
for {c in COLSR} {
printf " %2d", sum{z in ZBLSR} BR[r,c,z]*z;
}
printf "\n";
}
data;

param ROWS := 8;
param COLS := 8;
param ZBLS := 40;
param
Iz: 1   2   3   4   5   6   7   8 :=
1  .  33  35   .   .  -1  -1  -1
2  .   .  24  22   .  -1  -1  -1
3  .   .   .  21   .   .  -1  -1
4  .  26   .  13  40  11  -1  -1
5 27   .   .   .   9   .   1  -1
6 -1  -1   .   .  18   .   .  -1
7 -1  -1  -1  -1   .   7   .   .
8 -1  -1  -1  -1  -1  -1   5   .
;

end;
```

Using the data in the model produces the following: {{out}}

```
>glpsol --minisat --math Hidato.mathprog
GLPSOL: GLPK LP/MIP Solver, v4.47
Parameter(s) specified in the command line:
--minisat --math Hidato.mathprog
Generating void0...
Generating void1...
Generating void2...
Generating void3...
Generating void4...
Generating void5...
Generating void6...
Generating void7...
Generating Izfree...
Generating Iz1...
Generating rule1...
Generating rule2...
Generating rule3...
Model has been successfully generated
Will search for ANY feasible solution
Translating to CNF-SAT...
Original problem has 5279 rows, 4100 columns, and 33359 non-zeros
2520 covering inequalities
2719 partitioning equalities
Solving CNF-SAT problem...
Instance has 7076 variables, 24047 clauses, and 77735 literals

### ============================
[MINISAT]
### =============================

| Conflicts |     ORIGINAL     |              LEARNT              | Progress |
|           | Clauses Literals |   Limit Clauses Literals  Lit/Cl |          |

### ========================================================================

|         0 |   21432    75120 |    7144       0        0     0.0 |  0.000 % |

### ========================================================================

SATISFIABLE
Objective value =  0.000000000e+000
Time used:   0.0 secs
Memory used: 14.5 Mb (15192264 bytes)
32 33 35 36 37  0  0  0
31 34 24 22 38  0  0  0
30 25 23 21 12 39  0  0
29 26 20 13 40 11  0  0
27 28 14 19  9 10  1  0
0  0 15 16 18  8  2  0
0  0  0  0 17  7  6  3
0  0  0  0  0  0  5  4
Model has been successfully processed

```

Modelling Evil Case 1:

```
data;
param ROWS := 3;
param COLS := 3;
param ZBLS := 7;
param
Iz: 1   2   3 :=
1 -1   4  -1
2  .   7   .
3  1   .   .
;
end;

```

Produces:

```
>glpsol --minisat --math Hidato.mathprog --data Evil1.data
GLPSOL: GLPK LP/MIP Solver, v4.47
Parameter(s) specified in the command line:
--minisat --math Hidato.mathprog --data Evil1.data
Hidato.mathprog:47: warning: data section ignored
Generating void0...
Generating void1...
Generating void2...
Generating void3...
Generating void4...
Generating void5...
Generating void6...
Generating void7...
Generating Izfree...
Generating Iz1...
Generating rule1...
Generating rule2...
Generating rule3...
Model has been successfully generated
Will search for ANY feasible solution
Translating to CNF-SAT...
Original problem has 256 rows, 200 columns, and 935 non-zeros
56 covering inequalities
193 partitioning equalities
Solving CNF-SAT problem...
Instance has 337 variables, 1237 clauses, and 4094 literals

### ============================
[MINISAT]
### =============================

| Conflicts |     ORIGINAL     |              LEARNT              | Progress |
|           | Clauses Literals |   Limit Clauses Literals  Lit/Cl |          |

### ========================================================================

|         0 |    1060     3917 |     353       0        0     0.0 |  0.000 % |

### ========================================================================

SATISFIABLE
Objective value =  0.000000000e+000
Time used:   0.0 secs
Memory used: 0.8 Mb (861188 bytes)
0  4  0
3  7  5
1  2  6
Model has been successfully processed

```

Modelling Evil Case 2 - The Snake in the Grass:

```
data;
param ROWS := 3;
param COLS := 50;
param ZBLS := 74;
param
Iz:  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 :=
1   1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1 74
2  -1 -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1  . -1
3  -1 -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1 -1  .  . -1
;
end;

```

Produces:

```
G:\IAJAAR4.47>glpsol --minisat --math Hidato.mathprog --data Evil2.data
GLPSOL: GLPK LP/MIP Solver, v4.47
Parameter(s) specified in the command line:
--minisat --math Hidato.mathprog --data Evil2.data
Hidato.mathprog:47: warning: data section ignored
Evil2.data:11: warning: final NL missing before end of file
Generating void0...
Generating void1...
Generating void2...
Generating void3...
Generating void4...
Generating void5...
Generating void6...
Generating void7...
Generating Izfree...
Generating Iz1...
Generating rule1...
Generating rule2...
Generating rule3...
Model has been successfully generated
Will search for ANY feasible solution
Translating to CNF-SAT...
Original problem has 25500 rows, 19500 columns, and 147452 non-zeros
11026 covering inequalities
14400 partitioning equalities
Solving CNF-SAT problem...
Instance has 31338 variables, 98310 clauses, and 305726 literals

### ============================
[MINISAT]
### =============================

| Conflicts |     ORIGINAL     |              LEARNT              | Progress |
|           | Clauses Literals |   Limit Clauses Literals  Lit/Cl |          |

### ========================================================================

|         0 |   84134   291550 |   28044       0        0     0.0 |  0.000 % |
|       101 |   31135   126809 |   30848      98     5496    56.1 | 65.521 % |
|       251 |   31135   126809 |   33933     244    12470    51.1 | 66.552 % |
|       476 |   27353   115512 |   37327     446    23819    53.4 | 68.160 % |
|       814 |   26574   113330 |   41059     770    42161    54.8 | 69.586 % |
|      1321 |   25432   110534 |   45165    1262    83658    66.3 | 70.056 % |

### ========================================================================

SATISFIABLE
Objective value =  0.000000000e+000
Time used:   1.0 secs
Memory used: 60.9 Mb (63862624 bytes)
1  2  3  0  0  8  9  0  0 14 15  0  0 20 21  0  0 26 27  0  0 32 33  0  0 38 39  0  0 44 45  0  0 50 51  0  0 56 57  0  0 62 63  0  0 68 69  0  0 74
0  0  4  0  7  0 10  0 13  0 16  0 19  0 22  0 25  0 28  0 31  0 34  0 37  0 40  0 43  0 46  0 49  0 52  0 55  0 58  0 61  0 64  0 67  0 70  0 73  0
0  0  0  5  6  0  0 11 12  0  0 17 18  0  0 23 24  0  0 29 30  0  0 35 36  0  0 41 42  0  0 47 48  0  0 53 54  0  0 59 60  0  0 65 66  0  0 71 72  0
Model has been successfully processed

```

Modelling Evil Case 3 - A fatter snake in the Grass:

```
data;
param ROWS := 4;
param COLS := 46;
param ZBLS := 82;
param
Iz:  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 :=
1   1  0 -1 -1 -1  0  0 -1 -1 -1  0  0 -1 -1 -1  0  0 -1 -1 -1  0  0 -1 -1 -1  0  0 -1 -1 -1  0  0 -1 -1 -1  0  0 -1 -1 -1  0  0 -1 -1 -1 82
2  -1 -1  0 -1  0 -1 -1  0 -1  0 -1 -1  0 -1  0 -1 -1  0 -1  0 -1 -1  0 -1  0 -1 -1  0 -1  0 -1 -1  0 -1  0 -1 -1  0 -1  0 -1 -1  0 -1  0 -1
3  -1  0 -1  0 -1 -1  0 -1  0 -1 -1  0 -1  0 -1 -1  0 -1  0 -1 -1  0 -1  0 -1 -1  0 -1  0 -1 -1  0 -1  0 -1 -1  0 -1  0 -1 -1  0 -1  0 -1 -1
4   0  0  0 -1 -1  0  0  0 -1 -1  0  0  0 -1 -1  0  0  0 -1 -1  0  0  0 -1 -1  0  0  0 -1 -1  0  0  0 -1 -1  0  0  0 -1 -1  0  0  0 -1 -1 -1
;
end;

```

Produces:

```
>glpsol --minisat --math Hidato.mathprog --data Evil3.data
GLPSOL: GLPK LP/MIP Solver, v4.47
Parameter(s) specified in the command line:
--minisat --math Hidato.mathprog --data Evil3.data
Hidato.mathprog:47: warning: data section ignored
Generating void0...
Generating void1...
Generating void2...
Generating void3...
Generating void4...
Generating void5...
Generating void6...
Generating void7...
Generating Izfree...
Generating Iz1...
Generating rule1...
Generating rule2...
Generating rule3...
Model has been successfully generated
Will search for ANY feasible solution
Translating to CNF-SAT...
Original problem has 32684 rows, 23904 columns, and 198488 non-zeros
15006 covering inequalities
17596 partitioning equalities
Solving CNF-SAT problem...
Instance has 39792 variables, 130040 clauses, and 407222 literals

### ============================
[MINISAT]
### =============================

| Conflicts |     ORIGINAL     |              LEARNT              | Progress |
|           | Clauses Literals |   Limit Clauses Literals  Lit/Cl |          |

### ========================================================================

|         0 |  112710   389892 |   37570       0        0     0.0 |  0.000 % |

### ========================================================================

SATISFIABLE
Objective value =  0.000000000e+000
Time used:   0.0 secs
Memory used: 80.2 Mb (84067912 bytes)
1  2  0  0  0 10 11  0  0  0 19 20  0  0  0 28 29  0  0  0 37 38  0  0  0 46 47  0  0  0 55 56  0  0  0 64 65  0  0  0 73 74  0  0  0 82
0  0  3  0  9  0  0 12  0 18  0  0 21  0 27  0  0 30  0 36  0  0 39  0 45  0  0 48  0 54  0  0 57  0 63  0  0 66  0 72  0  0 75  0 81  0
0  4  0  8  0  0 13  0 17  0  0 22  0 26  0  0 31  0 35  0  0 40  0 44  0  0 49  0 53  0  0 58  0 62  0  0 67  0 71  0  0 76  0 80  0  0
5  6  7  0  0 14 15 16  0  0 23 24 25  0  0 32 33 34  0  0 41 42 43  0  0 50 51 52  0  0 59 60 61  0  0 68 69 70  0  0 77 78 79  0  0  0
Model has been successfully processed

```

## Nim

```import strutils, algorithm

var board: array[0..19, array[0..19, int]]
var given, start: seq[int] = @[]
var rows, cols: int = 0

proc setup(s: string) =
var lines = s.splitLines()
cols = lines[0].split().len()
rows = lines.len()

for i in 0 .. rows + 1:
for j in 0 .. cols + 1:
board[i][j] = -1

for r, row in pairs(lines):
for c, cell in pairs(row.split()):
case cell
of "__" :
board[r + 1][c + 1] = 0
continue
of "." : continue
else :
var val = parseInt(cell)
board[r + 1][c + 1] = val
if (val == 1):
given.sort(cmp[int], Ascending)

proc solve(r, c, n: int, next: int = 0): bool =
if n > given[high(given)]:
return true
if board[r][c] < 0:
return false
if (board[r][c] > 0 and board[r][c] != n):
return false
if (board[r][c] == 0 and given[next] == n):
return false

var back = board[r][c]
board[r][c] = n
for i in -1 .. 1:
for j in -1 .. 1:
if back == n:
if (solve(r + i, c + j, n + 1, next + 1)):  return true
else:
if (solve(r + i, c + j, n + 1, next)): return true
board[r][c] = back
result = false

proc printBoard() =
for r in  0 .. rows + 1:
for cellid,c in pairs(board[r]):
if cellid > cols + 1: break
if c == -1:
write(stdout, " . ")
elif c == 0:
write(stdout, "__ ")
else:
write(stdout, "\$# " % align(\$c,2))
writeLine(stdout, "")

var hi: string = """__ 33 35 __ __  .  .  .
__ __ 24 22 __  .  .  .
__ __ __ 21 __ __  .  .
__ 26 __ 13 40 11  .  .
27 __ __ __  9 __  1  .
.  . __ __ 18 __ __  .
.  .  .  . __  7 __ __
.  .  .  .  .  .  5 __"""

setup(hi)
printBoard()
echo("")
echo("Found:")
printBoard()
```

{{out}}

``` .  .  .  .  .  .  .  .  .  .
. __ 33 35 __ __  .  .  .  .
. __ __ 24 22 __  .  .  .  .
. __ __ __ 21 __ __  .  .  .
. __ 26 __ 13 40 11  .  .  .
. 27 __ __ __  9 __  1  .  .
.  .  . __ __ 18 __ __  .  .
.  .  .  .  . __  7 __ __  .
.  .  .  .  .  .  .  5 __  .
.  .  .  .  .  .  .  .  .  .

Found:
.  .  .  .  .  .  .  .  .  .
. 32 33 35 36 37  .  .  .  .
. 31 34 24 22 38  .  .  .  .
. 30 25 23 21 12 39  .  .  .
. 29 26 20 13 40 11  .  .  .
. 27 28 14 19  9 10  1  .  .
.  .  . 15 16 18  8  2  .  .
.  .  .  .  . 17  7  6  3  .
.  .  .  .  .  .  .  5  4  .
.  .  .  .  .  .  .  .  .  .
```

## Perl

```use strict;
use List::Util 'max';

our (@grid, @known, \$n);

sub show_board {
for my \$r (@grid) {
print map(!defined(\$_)	? '   ' : \$_
? sprintf("%3d", \$_)
: ' __'
, @\$r), "\n"
}
}

sub parse_board {
@grid = map{[map(/^_/ ? 0 : /^\./ ? undef: \$_, split ' ')]}
split "\n", shift();
for my \$y (0 .. \$#grid) {
for my \$x (0 .. \$#{\$grid[\$y]}) {
\$grid[\$y][\$x] > 0
and \$known[\$grid[\$y][\$x]] = "\$y,\$x";
}
}
\$n = max(map { max @\$_ } @grid);
}

sub neighbors {
my (\$y, \$x) = @_;
my @out;
for (	[-1, -1], [-1, 0], [-1, 1],
[ 0, -1],	   [ 0, 1],
[ 1, -1], [ 1, 0], [ 1, 1])
{
my \$y1 = \$y + \$_->[0];
my \$x1 = \$x + \$_->[1];
next if \$x1 < 0 || \$y1 < 0;
next unless defined \$grid[\$y1][\$x1];
push @out, "\$y1,\$x1";
}
@out
}

sub try_fill {
my (\$v, \$coord) = @_;
return 1	if \$v > \$n;

my (\$y, \$x) = split ',', \$coord;
my \$old = \$grid[\$y][\$x];

return	if \$old && \$old != \$v;
return	if exists \$known[\$v] and \$known[\$v] ne \$coord;

\$grid[\$y][\$x] = \$v;
print "\033[0H";
show_board();

try_fill(\$v + 1, \$_) && return 1
for neighbors(\$y, \$x);

\$grid[\$y][\$x] = \$old;
return
}

parse_board
#	". 4 .
#	 _ 7 _
#	 1 _ _";

#	" 1 _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . 74
#	  . . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _
#	  . . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _ . . _ _
#	";

"__ 33 35 __ __ .. .. .. .
__ __ 24 22 __ .. .. .. .
__ __ __ 21 __ __ .. .. .
__ 26 __ 13 40 11 .. .. .
27 __ __ __  9 __  1 .. .
.   . __ __ 18 __ __ .. .
.  ..  .  . __  7 __ __ .
.  .. .. ..  .  .  5 __ .";

print "\033[2J";
try_fill(1, \$known[1]);
```

{{out}} 32 33 35 36 37 31 34 24 22 38 30 25 23 21 12 39 29 26 20 13 40 11 27 28 14 19 9 10 1 15 16 18 8 2 17 7 6 3 5 4

## Perl 6

This uses a Warnsdorff solver, which cuts down the number of tries by more than a factor of six over the brute force approach. This same solver is used in:

• [[Solve a Hidato puzzle#Perl_6|Solve a Hidato puzzle]]
• [[Solve a Hopido puzzle#Perl_6|Solve a Hopido puzzle]]
• [[Solve a Holy Knight's tour#Perl_6|Solve a Holy Knight's tour]]
• [[Solve a Numbrix puzzle#Perl_6|Solve a Numbrix puzzle]]
• [[Solve the no connection puzzle#Perl_6|Solve the no connection puzzle]]
```my @adjacent = [-1, -1], [-1, 0], [-1, 1],
[ 0, -1],          [ 0, 1],
[ 1, -1], [ 1, 0], [ 1, 1];

solveboard q:to/END/;
__ 33 35 __ __ .. .. ..
__ __ 24 22 __ .. .. ..
__ __ __ 21 __ __ .. ..
__ 26 __ 13 40 11 .. ..
27 __ __ __  9 __  1 ..
.. .. __ __ 18 __ __ ..
.. .. .. .. __  7 __ __
.. .. .. .. .. ..  5 __
END

sub solveboard(\$board) {
my \$max = +\$board.comb(/\w+/);
my \$width = \$max.chars;

my @grid;
my @known;
my @neigh;
my @degree;

@grid = \$board.lines.map: -> \$line {
[ \$line.words.map: { /^_/ ?? 0 !! /^\./ ?? Rat !! \$_ } ]
}

sub neighbors(\$y,\$x --> List) {
my \$y1 = \$y + .[0];
my \$x1 = \$x + .[1];
take [\$y1,\$x1] if defined @grid[\$y1][\$x1];
}
}

for ^@grid -> \$y {
for ^@grid[\$y] -> \$x {
if @grid[\$y][\$x] -> \$v {
@known[\$v] = [\$y,\$x];
}
if @grid[\$y][\$x].defined {
@neigh[\$y][\$x] = neighbors(\$y,\$x);
@degree[\$y][\$x] = +@neigh[\$y][\$x];
}
}
}
print "\e[0H\e[0J";

my \$tries = 0;

try_fill 1, @known[1];

sub try_fill(\$v, \$coord [\$y,\$x] --> Bool) {
return True if \$v > \$max;
\$tries++;

my \$old = @grid[\$y][\$x];

return False if +\$old and \$old != \$v;
return False if @known[\$v] and @known[\$v] !eqv \$coord;

@grid[\$y][\$x] = \$v;               # conjecture grid value

print "\e[0H";                    # show conjectured board
for @grid -> \$r {
say do for @\$r {
when Rat { ' ' x \$width }
when 0   { '_' x \$width }
default  { .fmt("%{\$width}d") }
}
}

my @neighbors = @neigh[\$y][\$x][];

my @degrees;
for @neighbors -> \n [\$yy,\$xx] {
my \$d = --@degree[\$yy][\$xx];  # conjecture new degrees
push @degrees[\$d], n;         # and categorize by degree
}

for @degrees.grep(*.defined) -> @ties {
for @ties.reverse {           # reverse works better for this hidato anyway
return True if try_fill \$v + 1, \$_;
}
}

for @neighbors -> [\$yy,\$xx] {
++@degree[\$yy][\$xx];          # undo degree conjectures
}

@grid[\$y][\$x] = \$old;             # undo grid value conjecture
return False;
}

say "\$tries tries";
}
```

## Phix

```sequence board, warnsdorffs, knownx, knowny

integer width, height, limit, nchars, tries
string fmt, blank

constant ROW = 1, COL = 2
constant moves = {{-1,-1},{-1,0},{-1,1},{0,-1},{0,1},{1,-1},{1,0},{1,1}}

function onboard(integer row, integer col)
return row>=1 and row<=height and col>=nchars and col<=nchars*width
end function

procedure init_warnsdorffs()
integer nrow,ncol
for row=1 to height do
for col=nchars to nchars*width by nchars do
for move=1 to length(moves) do
nrow = row+moves[move][ROW]
ncol = col+moves[move][COL]*nchars
if onboard(nrow,ncol)
and board[nrow][ncol]='_' then
warnsdorffs[nrow][ncol] += 1
end if
end for
end for
end for
end procedure

function solve(integer row, integer col, integer n)
integer nrow, ncol
tries+= 1
if n>limit then return 1 end if
if knownx[n] then
for move=1 to length(moves) do
nrow = row+moves[move][ROW]
ncol = col+moves[move][COL]*nchars
if nrow = knownx[n]
and ncol = knowny[n] then
if solve(nrow,ncol,n+1) then return 1 end if
exit
end if
end for
return 0
end if
sequence wmoves = {}
for move=1 to length(moves) do
nrow = row+moves[move][ROW]
ncol = col+moves[move][COL]*nchars
if onboard(nrow,ncol)
and board[nrow][ncol]='_' then
wmoves = append(wmoves,{warnsdorffs[nrow][ncol],nrow,ncol})
end if
end for
wmoves = sort(wmoves)
-- avoid creating orphans
if length(wmoves)<2 or wmoves[2][1]>1 then
for m=1 to length(wmoves) do
{?,nrow,ncol} = wmoves[m]
warnsdorffs[nrow][ncol] -= 1
end for
for m=1 to length(wmoves) do
{?,nrow,ncol} = wmoves[m]
board[nrow][ncol-nchars+1..ncol] = sprintf(fmt,n)
if solve(nrow,ncol,n+1) then return 1 end if
board[nrow][ncol-nchars+1..ncol] = blank
end for
for m=1 to length(wmoves) do
{?,nrow,ncol} = wmoves[m]
warnsdorffs[nrow][ncol] += 1
end for
end if
return 0
end function

procedure Hidato(sequence s, integer w, integer h, integer lim)
integer y, ch, ch2, k
atom t0 = time()
s = split(s,'\n')
width = w
height = h
nchars = length(sprintf(" %d",lim))
fmt = sprintf(" %%%dd",nchars-1)
blank = repeat('_',nchars)
board = repeat(repeat(' ',width*nchars),height)
knownx = repeat(0,lim)
knowny = repeat(0,lim)
limit = 0
for x=1 to height do
for y=nchars to width*nchars by nchars do
if y>length(s[x]) then
ch = '.'
else
ch = s[x][y]
end if
if ch='_' then
limit += 1
elsif ch!='.' then
k = ch-'0'
ch2 = s[x][y-1]
if ch2!=' ' then
k += (ch2-'0')*10
board[x][y-1] = ch2
end if
knownx[k] = x
knowny[k] = y
limit += 1
end if
board[x][y] = ch
end for
end for
warnsdorffs = repeat(repeat(0,width*nchars),height)
init_warnsdorffs()
tries = 0
if solve(knownx[1],knowny[1],2) then
puts(1,join(board,"\n"))
printf(1,"\nsolution found in %d tries (%3.2fs)\n",{tries,time()-t0})
else
puts(1,"no solutions found\n")
end if
end procedure

constant board1 = """
__ 33 35 __ __ .. .. ..
__ __ 24 22 __ .. .. ..
__ __ __ 21 __ __ .. ..
__ 26 __ 13 40 11 .. ..
27 __ __ __  9 __  1 ..
.. .. __ __ 18 __ __ ..
.. .. .. .. __  7 __ __
.. .. .. .. .. ..  5 __"""
Hidato(board1,8,8,40)

constant board2 = """
. 4 .
_ 7 _
1 _ _"""
Hidato(board2,3,3,7)

constant board3 = """
1  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  . 74
.  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .  _  .
.  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  .  .  _  _  ."""
Hidato(board3,50,3,74)

constant board4 = """
54 __ 60 59 __ 67 __ 69 __
__ 55 __ __ 63 65 __ 72 71
51 50 56 62 __ .. .. .. ..
__ __ __ 14 .. .. 17 __ ..
48 10 11 .. 15 __ 18 __ 22
__ 46 __ ..  3 __ 19 23 __
__ 44 __  5 __  1 33 32 __
__ 43  7 __ 36 __ 27 __ 31
42 __ __ 38 __ 35 28 __ 30"""
Hidato(board4,9,9,72)

constant board5 = """
__ 58 __ 60 __ __ 63 66 __
57 55 59 53 49 __ 65 __ 68
__  8 __ __ 50 __ 46 45 __
10  6 __ .. .. .. __ 43 70
__ 11 12 .. .. .. 72 71 __
__ 14 __ .. .. .. 30 39 __
15  3 17 __ 28 29 __ __ 40
__ __ 19 22 __ __ 37 36 __
1 20 __ 24 __ 26 __ 34 33"""
Hidato(board5,9,9,72)

constant board6 = """
1 __ .. .. .. __ __ .. .. .. __ __ .. .. .. __ __ .. .. .. __ __ .. .. .. __ __ .. .. .. __ __ .. .. .. __ __ .. .. .. __ __ .. .. .. 82
.. .. __ .. __ .. .. __ .. __ .. .. __ .. __ .. .. __ .. __ .. .. __ .. __ .. .. __ .. __ .. .. __ .. __ .. .. __ .. __ .. .. __ .. __ ..
.. __ .. __ .. .. __ .. __ .. .. __ .. __ .. .. __ .. __ .. .. __ .. __ .. .. __ .. __ .. .. __ .. __ .. .. __ .. __ .. .. __ .. __ .. ..
__ __ __ .. .. __ __ __ .. .. __ __ __ .. .. __ __ __ .. .. __ __ __ .. .. __ __ __ .. .. __ __ __ .. .. __ __ __ .. .. __ __ __ .. .. .."""
Hidato(board6,46,4,82)
```

{{out}}

``` 32 33 35 36 37  .  .  .
31 34 24 22 38  .  .  .
30 25 23 21 12 39  .  .
29 26 20 13 40 11  .  .
27 28 14 19  9 10  1  .
.  . 15 16 18  8  2  .
.  .  .  . 17  7  6  3
.  .  .  .  .  .  5  4
solution found in 760 tries (0.00s)
. 4 .
3 7 5
1 2 6
solution found in 10 tries (0.00s)
1  2  3  .  .  8  9  .  . 14 15  .  . 20 21  .  . 26 27  .  . 32 33  .  . 38 39  .  . 44 45  .  . 50 51  .  . 56 57  .  . 62 63  .  . 68 69  .  . 74
.  .  4  .  7  . 10  . 13  . 16  . 19  . 22  . 25  . 28  . 31  . 34  . 37  . 40  . 43  . 46  . 49  . 52  . 55  . 58  . 61  . 64  . 67  . 70  . 73  .
.  .  .  5  6  .  . 11 12  .  . 17 18  .  . 23 24  .  . 29 30  .  . 35 36  .  . 41 42  .  . 47 48  .  . 53 54  .  . 59 60  .  . 65 66  .  . 71 72  .
solution found in 74 tries (0.00s)
54 53 60 59 58 67 66 69 70
52 55 61 57 63 65 68 72 71
51 50 56 62 64  .  .  .  .
49 12 13 14  .  . 17 21  .
48 10 11  . 15 16 18 20 22
47 46  9  .  3  2 19 23 24
45 44  8  5  4  1 33 32 25
41 43  7  6 36 34 27 26 31
42 40 39 38 37 35 28 29 30
solution found in 106 tries (0.00s)
56 58 54 60 61 62 63 66 67
57 55 59 53 49 47 65 64 68
9  8 52 51 50 48 46 45 69
10  6  7  .  .  . 44 43 70
5 11 12  .  .  . 72 71 42
4 14 13  .  .  . 30 39 41
15  3 17 18 28 29 38 31 40
2 16 19 22 25 27 37 36 32
1 20 21 24 23 26 35 34 33
solution found in 495 tries (0.00s)
1  2  .  .  . 10 11  .  .  . 19 20  .  .  . 28 29  .  .  . 37 38  .  .  . 46 47  .  .  . 55 56  .  .  . 64 65  .  .  . 73 74  .  .  . 82
.  .  3  .  9  .  . 12  . 18  .  . 21  . 27  .  . 30  . 36  .  . 39  . 45  .  . 48  . 54  .  . 57  . 63  .  . 66  . 72  .  . 75  . 81  .
.  4  .  8  .  . 13  . 17  .  . 22  . 26  .  . 31  . 35  .  . 40  . 44  .  . 49  . 53  .  . 58  . 62  .  . 67  . 71  .  . 76  . 80  .  .
5  6  7  .  . 14 15 16  .  . 23 24 25  .  . 32 33 34  .  . 41 42 43  .  . 50 51 52  .  . 59 60 61  .  . 68 69 70  .  . 77 78 79  .  .  .
solution found in 82 tries (0.02s)

```

## PicoLisp

```PicoLisp

(de hidato (Lst)
(let Grid (grid (length (maxi length Lst)) (length Lst))
(mapc
'((G L)
(mapc
'((This Val)
(nond
(Val
(with (: 0 1 1) (con (: 0 1)))    # Cut off west
(with (: 0 1 -1) (set (: 0 1)))   # east
(with (: 0 -1 1) (con (: 0 -1)))  # south
(with (: 0 -1 -1) (set (: 0 -1))) # north
(set This) )
((=T Val) (=: val Val)) ) )
G L ) )
Grid
(apply mapcar (reverse Lst) list) )
(let Todo
(by '((This) (: val)) sort
(mapcan '((Col) (filter '((This) (: val)) Col))
Grid ) )
(let N 1
(with (pop 'Todo)
(recur (N Todo)
(unless (> (inc 'N) (; Todo 1 val))
(find
'((Dir)
(with (Dir This)
(cond
((= N (: val))
(if (cdr Todo) (recurse N @) T) )
((not (: val))
(=: val N)
(or (recurse N Todo) (=: val NIL)) ) ) ) )
(quote
west east south north
((X) (or (south (west X)) (west (south X))))
((X) (or (north (west X)) (west (north X))))
((X) (or (south (east X)) (east (south X))))
((X) (or (north (east X)) (east (north X)))) ) ) ) ) ) ) )
(disp Grid 0
'((This)
(if (: val) (align 3 @) "   ") ) ) ) )
```

Test:

```PicoLisp
(hidato
(quote
(T   33  35  T   T)
(T   T   24  22  T)
(T   T   T   21  T   T)
(T   26  T   13  40  11)
(27  T   T   T   9   T   1)
(NIL NIL T   T   18  T   T)
(NIL NIL NIL NIL T   7   T  T)
(NIL NIL NIL NIL NIL NIL 5  T) ) )
```

Output:

```txt
+---+---+---+---+---+---+---+---+
8 | 32  33  35  36  37|   |   |   |
+   +   +   +   +   +---+---+---+
7 | 31  34  24  22  38|   |   |   |
+   +   +   +   +   +---+---+---+
6 | 30  25  23  21  12  39|   |   |
+   +   +   +   +   +   +---+---+
5 | 29  26  20  13  40  11|   |   |
+   +   +   +   +   +   +---+---+
4 | 27  28  14  19   9  10   1|   |
+---+---+   +   +   +   +   +---+
3 |   |   | 15  16  18   8   2|   |
+---+---+---+---+   +   +   +---+
2 |   |   |   |   | 17   7   6   3|
+---+---+---+---+---+---+   +   +
1 |   |   |   |   |   |   |  5   4|
+---+---+---+---+---+---+---+---+
a   b   c   d   e   f   g   h
```

## Prolog

Works with SWI-Prolog and library(clpfd) written by '''Markus Triska'''.

Puzzle solved is from the Wilkipedia page : http://en.wikipedia.org/wiki/Hidato

```Prolog
:- use_module(library(clpfd)).

hidato :-
init1(Li),
% skip first blank line
init2(1, 1, 10, Li),
my_write(Li).

init1(Li) :-
Li = [  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
0,  A, 33, 35,  B,  C,  0,  0,  0,  0,
0,  D,  E, 24, 22,  F,  0,  0,  0,  0,
0,  G,  H,  I, 21,  J,  K,  0,  0,  0,
0,  L, 26,  M, 13, 40, 11,  0,  0,  0,
0, 27,  N,  O,  P,  9,  Q,  1,  0,  0,
0,  0,  0,  R,  S, 18,  T,  U,  0,  0,
0,  0,  0,  0,  0,  V,  7,  W,  X,  0,
0,  0,  0,  0,  0,  0,  0,  5,  Y,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0],

LV = [  A, 33, 35,  B,  C,
D,  E, 24, 22,  F,
G,  H,  I, 21,  J,  K,
L, 26,  M, 13, 40, 11,
27,  N,  O,  P,  9,  Q,  1,
R,  S, 18,  T,  U,
V,  7,  W,  X,
5,  Y],

LV ins 1..40,
all_distinct(LV).

% give the constraints
% Stop before the last line
init2(_N, Col, Max_Col, _L) :-
Col is Max_Col - 1.

% skip zeros
init2(N, Lig, Col, L) :-
I is N + Lig * Col,
element(I, L, 0),
!,
V is N+1,
(   V > Col -> N1 = 1, Lig1 is Lig + 1; N1 = V, Lig1 = Lig),
init2(N1, Lig1, Col, L).

% skip first column
init2(1, Lig, Col, L) :-
!,
init2(2, Lig, Col, L) .

% skip last column
init2(Col, Lig, Col, L) :-
!,
Lig1 is Lig+1,
init2(1, Lig1, Col, L).

% V5 V3 V6
% V1  V V2
% V7 V4 V8
% general case
init2(N, Lig, Col, L) :-
I is N + Lig * Col,
element(I, L, V),

I1 is I  - 1, I2 is I  + 1, I3 is I  - Col, I4 is I  + Col,
I5 is I3 - 1, I6 is I3 + 1, I7 is I4 - 1,   I8 is I4 + 1,

maplist(compute_BI(L, V), [I1,I2,I3,I4,I5,I6,I7,I8], VI, BI),

sum(BI, #=, SBI),

(  ((V #=  1 #\/ V #=  40) #/\ SBI #= 1) #\/
(V #\= 1 #/\ V #\= 40  #/\ SBI #= 2)) #<==> 1,

labeling([ffc, enum], [V | VI]),

N1 is N+1,
init2(N1, Lig, Col, L).

compute_BI(L, V, I, VI, BI) :-
element(I, L, VI),
VI #= 0 #==> BI #= 0,
( VI #\= 0 #/\ (V - VI #= 1 #\/ VI - V #= 1))  #<==> BI.

% display the result
my_write([0, A, B, C, D, E, F, G, H, 0 | T]) :-
maplist(my_write_1, [A, B, C, D, E, F, G, H]), nl,
my_write(T).

my_write([]).

my_write_1(0) :-
write('   ').

my_write_1(X) :-
writef('%3r', [X]).
```

{{out}}

```txt
?- hidato.
32 33 35 36 37
31 34 24 22 38
30 25 23 21 12 39
29 26 20 13 40 11
27 28 14 19  9 10  1
15 16 18  8  2
17  7  6  3
5  4
true
```

## Python

```python
board = []
given = []
start = None

def setup(s):
global board, given, start
lines = s.splitlines()
ncols = len(lines[0].split())
nrows = len(lines)
board = [[-1] * (ncols + 2) for _ in xrange(nrows + 2)]

for r, row in enumerate(lines):
for c, cell in enumerate(row.split()):
if cell == "__" :
board[r + 1][c + 1] = 0
continue
elif cell == ".":
continue # -1
else:
val = int(cell)
board[r + 1][c + 1] = val
given.append(val)
if val == 1:
start = (r + 1, c + 1)
given.sort()

def solve(r, c, n, next=0):
if n > given[-1]:
return True
if board[r][c] and board[r][c] != n:
return False
if board[r][c] == 0 and given[next] == n:
return False

back = 0
if board[r][c] == n:
next += 1
back = n

board[r][c] = n
for i in xrange(-1, 2):
for j in xrange(-1, 2):
if solve(r + i, c + j, n + 1, next):
return True
board[r][c] = back
return False

def print_board():
d = {-1: "  ", 0: "__"}
bmax = max(max(r) for r in board)
form = "%" + str(len(str(bmax)) + 1) + "s"
for r in board[1:-1]:
print "".join(form % d.get(c, str(c)) for c in r[1:-1])

hi = """\
__ 33 35 __ __  .  .  .
__ __ 24 22 __  .  .  .
__ __ __ 21 __ __  .  .
__ 26 __ 13 40 11  .  .
27 __ __ __  9 __  1  .
.  . __ __ 18 __ __  .
.  .  .  . __  7 __ __
.  .  .  .  .  .  5 __"""

setup(hi)
print_board()
solve(start[0], start[1], 1)
print
print_board()
```

{{out}}

```txt
__ 33 35 __ __
__ __ 24 22 __
__ __ __ 21 __ __
__ 26 __ 13 40 11
27 __ __ __  9 __  1
__ __ 18 __ __
__  7 __ __
5 __

32 33 35 36 37
31 34 24 22 38
30 25 23 21 12 39
29 26 20 13 40 11
27 28 14 19  9 10  1
15 16 18  8  2
17  7  6  3
5  4
```

## Racket

### Standalone

Algorithm is depth first search for each number, repeating for all numbers in ascending order.
It currently runs slowish due to temporary shortcomings in untyped Racket's array indexing, but finished
immediately when tested with custom 2d vector library.

```Racket

#lang racket
(require math/array)

;#f = not a legal position, #t = blank position
(define board
(array
#[#[#t 33 35 #t #t #f #f #f]
#[#t #t 24 22 #t #f #f #f]
#[#t #t #t 21 #t #t #f #f]
#[#t 26 #t 13 40 11 #f #f]
#[27 #t #t #t  9 #t  1 #f]
#[#f #f #t #t 18 #t #t #f]
#[#f #f #f #f #t  7 #t #t]
#[#f #f #f #f #f #f  5 #t]]))

;filters elements with the predicate, returning the element and its indices
(define (array-indices-of a f)
(for*/list ([i (range 0 (vector-ref (array-shape a) 0))]
[j (range 0 (vector-ref (array-shape a) 1))]
#:when (f (array-ref a (vector i j))))
(list (array-ref a (vector i j)) i j)))

;returns a list, each element is a list of the number followed by i and j indices
;sorted ascending by number
(define (goal-list v) (sort (array-indices-of v number?) (λ (a b) (< (car a) (car b)))))

;every direction + start position that's on the board
(define (legal-moves a i0 j0)
(for*/list ([i (range (sub1 i0) (+ i0 2))]
[j (range (sub1 j0) (+ j0 2))]
;cartesian product -1..1 and -1..1, except 0 0
#:when (and (not (and (= i i0) (= j j0)))
;make sure it's on the board
(<= 0 i (sub1 (vector-ref (array-shape a) 0)))
(<= 0 j (sub1 (vector-ref (array-shape a) 1)))
;make sure it's an actual position too (the real board isn't square)
(array-ref a (vector i j))))
(cons i j)))

;find path through array, returning list of coords from start to finish
(define (hidato-path a)
;get starting position as first goal
(match-let ([(cons (list n i j) goals) (goal-list a)])
(let hidato ([goals goals] [n n] [i i] [j j] [path '()])
(match goals
;no more goals, return path
['() (reverse (cons (cons i j) path))]
;get next goal
[(cons (list n-goal i-goal j-goal) _)
(let ([move (cons i j)])
;already visiting a spot or taking too many moves to reach the next goal is no good
(cond [(or (member move path) (> n n-goal)) #f]
;taking the right number of moves to be at the goal square is good
;so go to the next goal
[(and (= n n-goal) (= i i-goal) (= j j-goal))
(hidato (cdr goals) n i j path)]
;depth first search using every legal move to find next goal
[else (ormap (λ (m) (hidato goals (add1 n) (car m) (cdr m) (cons move path)))
(legal-moves a i j))]))]))))

;take a path and insert it into the array
(define (put-path a path)
(let ([a (array->mutable-array a)])
(for ([n (range 1 (add1 (length path)))] [move path])
(array-set! a (vector (car move) (cdr move)) n))
a))

;main function
(define (hidato board) (put-path board (hidato-path board)))

```

{{out}}

```txt

> (hidato board)
(mutable-array
#[#[32 33 35 36 37 #f #f #f]
#[31 34 24 22 38 #f #f #f]
#[30 25 23 21 12 39 #f #f]
#[29 26 20 13 40 11 #f #f]
#[27 28 14 19 9 10 1 #f]
#[#f #f 15 16 18 8 2 #f]
#[#f #f #f #f 17 7 6 3]
#[#f #f #f #f #f #f 5 4]])

```

===Using Hidato Family Solver from [[Solve a Numbrix puzzle#Racket|Numbrix]]===

This solution uses the module "hidato-family-solver.rkt" from
[[Solve a Numbrix puzzle#Racket]]. The difference between the two is
essentially the neighbourhood function.

```racket
#lang racket
(require "hidato-family-solver.rkt")

(define moore-neighbour-offsets
'((+1 0) (-1 0) (0 +1) (0 -1) (+1 +1) (-1 -1) (-1 +1) (+1 -1)))

(define solve-hidato (solve-hidato-family moore-neighbour-offsets))

(displayln
(puzzle->string
(solve-hidato
#(#( 0 33 35  0  0)
#( 0  0 24 22  0)
#( 0  0  0 21  0  0)
#( 0 26  0 13 40 11)
#(27  0  0  0  9  0  1)
#( _  _  0  0 18  0  0)
#( _  _  _  _  0  7  0  0)
#( _  _  _  _  _  _  5  0)))))

```

{{out}}

```txt
32 33 35 36 37  _  _  _
31 34 24 22 38  _  _  _
30 25 23 21 12 39  _  _
29 26 20 13 40 11  _  _
27 28 14 19  9 10  1  _
_  _ 15 16 18  8  2  _
_  _  _  _ 17  7  6  3
_  _  _  _  _  _  5  4
```

## REXX

Programming note:   the coördinates for the cells used are the same as an   X Y   grid, that is,

the bottom left-most cell is   1 1   and the tenth cell on row 2 is   2 10

If ''any'' marker is negative, then it's assumed to be a Numbrix puzzle (and the absolute value is used).

Over half of the REXX program deals with validating the input and displaying the puzzle.

''Hidato''   and   ''Numbrix''   are registered trademarks.

```rexx
/*REXX program solves a  Numbrix (R) puzzle, it also displays the puzzle and solution.  */
maxR=0;    maxC=0;    maxX=0;     minR=9e9;      minC=9e9;    minX=9e9;    cells=0;    @.=
parse arg xxx;        PZ='Hidato puzzle'         /*get the cell definitions from the CL.*/
xxx=translate(xxx, , "/\;:_", ',')               /*also allow other characters as comma.*/

do  while xxx\='';  parse var  xxx    r c   marks  ','  xxx
do  while marks\='';          _=@.r.c
parse var marks  x  marks
if datatype(x,'N')  then do;  x=x/1                     /*normalize X*/
if x<0  then PZ= 'Numbrix puzzle'
x=abs(x)                  /*use  │x│   */
end
minR=min(minR,r);  maxR=max(maxR,r); minC=min(minC,c); maxC=max(maxC,c)
if x==1   then do;  !r=r;  !c=c;  end              /*the START cell. */
if _\=='' then call err "cell at" r c 'is already occupied with:'  _
@.r.c=x;   c=c+1;    cells=cells+1                 /*assign a mark.  */
if x==.              then iterate                  /*is a hole?  Skip*/
if \datatype(x,'W')  then call err 'illegal marker specified:' x
minX=min(minX,x);    maxX=max(maxX,x)              /*min and max  X. */
end   /*while marks¬='' */
end       /*while xxx  ¬='' */
call show                                        /* [↓]  is used for making fast moves. */
Nr = '0  1   0  -1    -1   1   1  -1'            /*possible  row     for the next move. */
Nc = '1  0  -1   0     1  -1   1  -1'            /*   "      column   "   "    "    "   */
pMoves=words(Nr) -4*(left(PZ,1)=='N')            /*is this to be a Numbrix puzzle ?     */
do i=1  for pMoves;   Nr.i=word(Nr,i);   Nc.i=word(Nc,i);   end     /*for fast moves. */
if \next(2,!r,!c)  then call err  'No solution possible for this'   PZ    "puzzle."
say 'A solution for the'   PZ    "exists.";      say;                     call show
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
err:  say;    say '***error*** (from' PZ"): "    arg(1);        say;          exit 13
/*──────────────────────────────────────────────────────────────────────────────────────*/
next: procedure expose @. Nr. Nc. cells pMoves;  parse arg #,r,c;   ##=#+1
do t=1  for pMoves                                   /* [↓]  try some moves. */
parse value  r+Nr.t c+Nc.t  with nr nc               /*next move coördinates.*/
if @.nr.nc==.  then do;                @.nr.nc=#     /*let's try this move.  */
if #==cells        then leave    /*is this the last move?*/
if next(##,nr,nc)  then return 1
@.nr.nc=.                        /*undo the above move.  */
iterate                          /*go & try another move.*/
end
if @.nr.nc==#  then do                               /*this a fill-in move ? */
if #==cells        then return 1 /*this is the last move.*/
if next(##,nr,nc)  then return 1 /*a fill-in move.       */
end
end   /*t*/
return 0                                                  /*this ain't working.   */
/*──────────────────────────────────────────────────────────────────────────────────────*/
show: if maxR<1 | maxC<1  then call err  'no legal cell was specified.'
if minX<1           then call err  'no  1  was specified for the puzzle start'
w=max(2,length(cells));  do    r=maxR  to minR  by -1; _=
do c=minC  to maxC;        _=_ right(@.r.c,w); end /*c*/
say _
end   /*r*/
say;    return
```

'''output'''   when using the following as input:

1 7 5 .\2 5 . 7 . .\3 3 . . 18 . .\4 1 27 . . . 9 . 1\5 1 . 26 . 13 40 11\6 1 . . . 21 . .\7 1 . . 24 22 .\8 1 . 33 35 . .

```txt

. 33 35  .  .
.  . 24 22  .
.  .  . 21  .  .
. 26  . 13 40 11
27  .  .  .  9  .  1
.  . 18  .  .
.  7  .  .
5  .

A solution for the Hidato puzzle exists.

32 33 35 36 37
31 34 24 22 38
30 25 23 21 12 39
29 26 20 13 40 11
27 28 14 19  9 10  1
15 16 18  8  2
17  7  6  3
5  4

```

## Ruby

### Without Warnsdorff

The following class provides functionality for solving a hidato problem:

```ruby
# Solve a Hidato Puzzle
#
class Hidato
ADJUST = [[-1, -1], [-1, 0], [-1, 1], [0, -1], [0, 1], [1, -1], [1, 0], [1, 1]]

def initialize(board, pout=true)
@board = []
board.each_line do |line|
@board << line.split.map{|n| Cell[Integer(n), false] rescue nil} + [nil]
end
@board << []                                # frame (Sentinel value : nil)
@board.each_with_index do |row, x|
row.each_with_index do |cell, y|
if cell
@sx, @sy = x, y  if cell.value==1     # start position
end
end
end
@xmax = @board.size - 1
@ymax = @board.map(&:size).max - 1
@end  = @board.flatten.compact.size
puts to_s('Problem:')  if pout
end

def solve
@zbl = Array.new(@end+1, false)
@board.flatten.compact.each{|cell| @zbl[cell.value] = true}
puts (try(@board[@sx][@sy], 1) ? to_s('Solution:') : "No solution")
end

def try(cell, seq_num)
return true  if seq_num > @end
return false if cell.used
value = cell.value
return false if value > 0 and value != seq_num
return false if value == 0 and @zbl[seq_num]
cell.used = true
if try(@board[x][y], seq_num+1)
cell.value = seq_num
return true
end
end
cell.used = false
end

def to_s(msg=nil)
str = (0...@xmax).map do |x|
(0...@ymax).map{|y| "%3s" % ((c=@board[x][y]) ? c.value : c)}.join
end
(msg ? [msg] : []) + str + [""]
end
end
```

'''Test:'''

```ruby
# Which may be used as follows to solve Evil Case 1:
board1 = < 0 and value != seq_num
return false if value == 0 and @zbl[seq_num]
cell.used = true
if seq_num == @end
cell.value = seq_num
return true
end
a = []
cl = @board[x][y]
a << [wdof(cl.adj)*10+n, x, y]  unless cl.used
end
a.sort.each do |key, x, y|
if try(@board[x][y], seq_num+1)
cell.value = seq_num
return true
end
end
cell.used = false
end

end

def to_s(msg=nil)
str = (0...@xmax).map do |x|
(0...@ymax).map{|y| @format % ((c=@board[x][y]) ? c.value : c)}.join
end
(msg ? [msg] : []) + str + [""]
end
end
```

Which may be used as follows to solve Hidato Puzzles:

```ruby
require 'HLPsolver'

ADJACENT = [[-1, -1], [-1, 0], [-1, 1], [0, -1], [0, 1], [1, -1], [1, 0], [1, 1]]

# solve Evil Case 1:
board1 = < max(given) then
solved := TRUE;
elsif board[r][c] = 0 and n not in given or board[r][c] = n then
back := board[r][c];
board[r][c] := n;
for i range -1 to 1 until solved do
for j range -1 to 1 until solved do
solved := solve(r + i, c + j, n + 1);
end for;
end for;
if not solved then
board[r][c] := back;
end if;
end if;
end func;

const proc: printBoard is func
local
var integer: r is 0;
var integer: c is 0;
begin
for key r range board do
for c range board[r] do
if c = -1 then
write(" . ");
elsif c > 0 then
write(c lpad 2 <& " ");
else
write("__ ");
end if;
end for;
writeln;
end for;
end func;

const proc: main is func
local
const array string: input is [] ("_ 33 35 _ _ . . .",
"_ _ 24 22 _ . . .",
"_ _ _ 21 _ _ . .",
"_ 26 _ 13 40 11 . .",
"27 _ _ _ 9 _ 1 .",
". . _ _ 18 _ _ .",
". . . . _ 7 _ _",
". . . . . . 5 _");
begin
setup(input);
printBoard;
writeln;
if solve(startRow, startColumn, 1) then
writeln("Found:");
printBoard;
end if;
end func;
```

{{out}}

```txt

.  .  .  .  .  .  .  .  .  .
. __ 33 35 __ __  .  .  .  .
. __ __ 24 22 __  .  .  .  .
. __ __ __ 21 __ __  .  .  .
. __ 26 __ 13 40 11  .  .  .
. 27 __ __ __  9 __  1  .  .
.  .  . __ __ 18 __ __  .  .
.  .  .  .  . __  7 __ __  .
.  .  .  .  .  .  .  5 __  .
.  .  .  .  .  .  .  .  .  .

Found:
.  .  .  .  .  .  .  .  .  .
. 32 33 35 36 37  .  .  .  .
. 31 34 24 22 38  .  .  .  .
. 30 25 23 21 12 39  .  .  .
. 29 26 20 13 40 11  .  .  .
. 27 28 14 19  9 10  1  .  .
.  .  . 15 16 18  8  2  .  .
.  .  .  .  . 17  7  6  3  .
.  .  .  .  .  .  .  5  4  .
.  .  .  .  .  .  .  .  .  .

```

## Tailspin

{{trans|Java}}

```tailspin

def input:
'__ 33 35 __ __  .  .  .
__ __ 24 22 __  .  .  .
__ __ __ 21 __ __  .  .
__ 26 __ 13 40 11  .  .
27 __ __ __  9 __  1  .
.  . __ __ 18 __ __  .
.  .  .  . __  7 __ __
.  .  .  .  .  .  5 __';

templates hidato
composer setup
@: {row: 1, col: 1, given:[]};
{ board: [ + ], given: \$@.given -> [i](<{}> { n: \$i, \$...} !) }
rule line: [ + ] (<'\n '>?) (..|@: {row: \$@.row + 1, col: 1};)
rule cell:  (<' '>?) (@.col: \$@.col + 1;)
rule open: <'__'> -> 0
rule blocked: <' \.'> -> -1
rule given: (<' '>?) (def given: ;)
(\$given -> ..|@.given: \$@.given::length+1..\$ -> [];)
(\$given -> @.given(\$): { row: \$@.row, col: \$@.col };)
\$given
end setup

templates solve
<~{row: <1..\$@hidato.board::length>, col: <1..\$@hidato.board(1)::length>}> !VOID
<{ n: <\$@hidato.given(-1).n>, row: <\$@hidato.given(-1).row>, col: <\$@hidato.given(-1).col> }> \$@hidato.board !
)> !VOID
)?(\$@hidato.given(\$.next) <\$.n>)> !VOID
<>
def guess: \$;
def back: \$@hidato.board(\$.row; \$.col);
def next: \$ -> (<{n: <\$back>}> \$.next + 1! <> \$.next!);
@hidato.board(\$.row; \$.col): \$.n;
0..8 -> { next: \$next, n: \$guess.n + 1, row: \$guess.row + \$ / 3 - 1, col: \$guess.col + \$ mod 3 - 1 } -> #
@hidato.board(\$.row; \$.col): \$back;
end solve

@: \$ -> setup;
{ next: 1, \$@.given(1)... } -> solve !
end hidato

\$input -> hidato -> '\$... -> '\$... -> ' \$ -> (<-1> ' .' ! <10..> '\$;' ! <> ' \$;' !);';
';
' ->!OUT::write

```

{{out}}

```txt

32 33 35 36 37  .  .  .
31 34 24 22 38  .  .  .
30 25 23 21 12 39  .  .
29 26 20 13 40 11  .  .
27 28 14 19  9 10  1  .
.  . 15 16 18  8  2  .
.  .  .  . 17  7  6  3
.  .  .  .  .  .  5  4

```

## Tcl

```tcl
proc init {initialConfiguration} {
global grid max filled
set max 1
set y 0
foreach row [split [string trim \$initialConfiguration "\n"] "\n"] {
set x 0
set rowcontents {}
foreach cell \$row {
if {![string is integer -strict \$cell]} {set cell -1}
lappend rowcontents \$cell
set max [expr {max(\$max, \$cell)}]
if {\$cell > 0} {
dict set filled \$cell [list \$y \$x]
}
incr x
}
lappend grid \$rowcontents
incr y
}
}

proc findseps {} {
global max filled
set result {}
for {set i 1} {\$i < \$max-1} {incr i} {
if {[dict exists \$filled \$i]} {
for {set j [expr {\$i+1}]} {\$j <= \$max} {incr j} {
if {[dict exists \$filled \$j]} {
if {\$j-\$i > 1} {
lappend result [list \$i \$j [expr {\$j-\$i}]]
}
break
}
}
}
}
return [lsort -integer -index 2 \$result]
}

proc makepaths {sep} {
global grid filled
lassign \$sep from to len
lassign [dict get \$filled \$from] y x
set result {}
foreach {dx dy} {-1 -1  -1 0  -1 1  0 -1  0 1  1 -1  1 0  1 1} {
discover [expr {\$x+\$dx}] [expr {\$y+\$dy}] [expr {\$from+1}] \$to \
[list [list \$from \$x \$y]] \$grid
}
return \$result
}
proc discover {x y n limit path model} {
global filled
# Check for illegal
if {[lindex \$model \$y \$x] != 0} return
upvar 1 result result
lassign [dict get \$filled \$limit] ly lx
# Special case
if {\$n == \$limit-1} {
if {abs(\$x-\$lx)<=1 && abs(\$y-\$ly)<=1 && !(\$lx==\$x && \$ly==\$y)} {
lappend result [lappend path [list \$n \$x \$y] [list \$limit \$lx \$ly]]
}
return
}
# Check for impossible
if {abs(\$x-\$lx) > \$limit-\$n || abs(\$y-\$ly) > \$limit-\$n} return
# Recursive search
lappend path [list \$n \$x \$y]
lset model \$y \$x \$n
incr n
foreach {dx dy} {-1 -1  -1 0  -1 1  0 -1  0 1  1 -1  1 0  1 1} {
discover [expr {\$x+\$dx}] [expr {\$y+\$dy}] \$n \$limit \$path \$model
}
}

proc applypath {path} {
global grid filled
puts "Found unique path for [lindex \$path 0 0] -> [lindex \$path end 0]"
foreach cell [lrange \$path 1 end-1] {
lassign \$cell n x y
lset grid \$y \$x \$n
dict set filled \$n [list \$y \$x]
}
}

proc printgrid {} {
global grid max
foreach row \$grid {
foreach cell \$row {
puts -nonewline [format " %*s" [string length \$max] [expr {
\$cell==-1 ? "." : \$cell
}]]
}
puts ""
}
}

proc solveHidato {initialConfiguration} {
init \$initialConfiguration
set limit [llength [findseps]]
while {[llength [set seps [findseps]]] && [incr limit -1]>=0} {
foreach sep \$seps {
if {[llength [set paths [makepaths \$sep]]] == 1} {
applypath [lindex \$paths 0]
break
}
}
}
puts ""
printgrid
}
```

Demonstrating (dots are “outside” the grid, and zeroes are the cells to be filled in):

```tcl
solveHidato "
0  33  35   0   0   .   .   .
0   0  24  22   0   .   .   .
0   0   0  21   0   0   .   .
0  26   0  13  40  11   .   .
27   0   0   0   9   0   1   .
.   .   0   0  18   0   0   .
.   .   .   .   0   7   0   0
.   .   .   .   .   .   5   0
"
```

{{out}}

```txt

Found unique path for 5 -> 7
Found unique path for 7 -> 9
Found unique path for 9 -> 11
Found unique path for 11 -> 13
Found unique path for 33 -> 35
Found unique path for 18 -> 21
Found unique path for 1 -> 5
Found unique path for 35 -> 40
Found unique path for 22 -> 24
Found unique path for 24 -> 26
Found unique path for 27 -> 33
Found unique path for 13 -> 18

32 33 35 36 37  .  .  .
31 34 24 22 38  .  .  .
30 25 23 21 12 39  .  .
29 26 20 13 40 11  .  .
27 28 14 19  9 10  1  .
.  . 15 16 18  8  2  .
.  .  .  . 17  7  6  3
.  .  .  .  .  .  5  4

```

More complex cases are solvable with an [[/Extended Tcl solution|extended version of this code]], though that has more onerous version requirements.

## zkl

{{trans|Python}}

```zkl
hi:=  // 0==empty cell, X==not a cell
#<<<
"0  33  35   0   0   X   X   X
0   0  24  22   0   X   X   X
0   0   0  21   0   0   X   X
0  26   0  13  40  11   X   X
27   0   0   0   9   0   1   X
X   X   0   0  18   0   0   X
X   X   X   X   0   7   0   0
X   X   X   X   X   X   5   0";
#<<<

board,given,start:=setup(hi);
print_board(board);
solve(board,given, start.xplode(), 1);
println();
print_board(board);
```

```zkl
fcn print_board(board){
d:=D(-1,"  ", 0,"__");
foreach r in (board[1,-1]){
r[1,-1].pump(String,'wrap(c){ "%2s ".fmt(d.find(c,c)) }).println();
}
}
fcn setup(s){
lines:=s.split("\n");
ncols,nrows:=lines[0].split().len(),lines.len();
board:=(nrows+2).pump(List(), (ncols+2).pump(List(),-1).copy);
given,start:=List(),Void;
foreach r,row in (lines.enumerate()){
foreach c,cell in (row.split().enumerate()){
if(cell=="X") continue;   // X == not in play, leave at -1
val:=cell.toInt();
board[r+1][c+1]=val;
given.append(val);
if(val==1) start=T(r+1,c+1);
}
}
return(board,given.filter().sort(),start);
}
fcn solve(board,given, r,c,n, next=0){
if(n>given[-1])                       return(True);
if(board[r][c] and board[r][c]!=n)    return(False);
if(board[r][c]==0 and given[next]==n) return(False);

back:=0;
if(board[r][c]==n){ next+=1; back=n; }

board[r][c]=n;
foreach i,j in ([-1..1],[-1..1]){
if(solve(board,given, r+i,c+j,n+1, next)) return(True);
}
board[r][c]=back;
False
}
```

{{out}}

```txt

__ 33 35 __ __
__ __ 24 22 __
__ __ __ 21 __ __
__ 26 __ 13 40 11
27 __ __ __  9 __  1
__ __ 18 __ __
__  7 __ __
5 __

32 33 35 36 37
31 34 24 22 38
30 25 23 21 12 39
29 26 20 13 40 11
27 28 14 19  9 10  1
15 16 18  8  2
17  7  6  3
5  4

```

[[Category:Puzzles]]

```