⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task}} Hopido puzzles are similar to [[Solve a Hidato puzzle | Hidato]]. The most important difference is that the only moves allowed are: hop over one tile diagonally; and over two tiles horizontally and vertically. It should be possible to start anywhere in the path, the end point isn't indicated and there are no intermediate clues. [http://gamesandinnovation.com/2010/02/10/hopido-design-post-mortem/ Hopido Design Post Mortem] contains the following:
"Big puzzles represented another problem. Up until quite late in the project our puzzle solver was painfully slow with most puzzles above 7×7 tiles. Testing the solution from each starting point could take hours. If the tile layout was changed even a little, the whole puzzle had to be tested again. We were just about to give up the biggest puzzles entirely when our programmer suddenly came up with a magical algorithm that cut the testing process down to only minutes. Hooray!"
Knowing the kindness in the heart of every contributor to Rosetta Code, I know that we shall feel that as an act of humanity we must solve these puzzles for them in let's say milliseconds.
Example:
. 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . . . 0 0 0 . . . . . 0 . . .
Extra credits are available for other interesting designs.
;Related tasks:
- [[A* search algorithm]]
- [[Solve a Holy Knight's tour]]
- [[Knight's tour]]
- [[N-queens problem]]
- [[Solve a Hidato puzzle]]
- [[Solve a Holy Knight's tour]]
- [[Solve a Numbrix puzzle]]
- [[Solve the no connection puzzle]]
AutoHotkey
SolveHopido(Grid, Locked, Max, row, col, num:=1, R:="", C:=""){
if (R&&C) ; if neighbors (not first iteration)
{
Grid[R, C] := ">" num ; place num in current neighbor and mark it visited ">"
row:=R, col:=C ; move to current neighbor
}
num++ ; increment num
if (num=max) ; if reached end
return map(Grid) ; return solution
if locked[num] ; if current num is a locked value
{
row := StrSplit((StrSplit(locked[num], ",").1) , ":").1 ; find row of num
col := StrSplit((StrSplit(locked[num], ",").1) , ":").2 ; find col of num
if SolveHopido(Grid, Locked, Max, row, col, num) ; solve for current location and value
return map(Grid) ; if solved, return solution
}
else
{
for each, value in StrSplit(Neighbor(row,col), ",")
{
R := StrSplit(value, ":").1
C := StrSplit(value, ":").2
if (Grid[R,C] = "") ; a hole or out of bounds
|| InStr(Grid[R, C], ">") ; visited
|| Locked[num+1] && !(Locked[num+1]~= "\b" R ":" C "\b") ; not neighbor of locked[num+1]
|| Locked[num-1] && !(Locked[num-1]~= "\b" R ":" C "\b") ; not neighbor of locked[num-1]
|| Locked[num] ; locked value
|| Locked[Grid[R, C]] ; locked cell
continue
if SolveHopido(Grid, Locked, Max, row, col, num, R, C) ; solve for current location, neighbor and value
return map(Grid) ; if solved, return solution
}
}
num-- ; step back
for i, line in Grid
for j, element in line
if InStr(element, ">") && (StrReplace(element, ">") >= num)
Grid[i, j] := 0
}
;--------------------------------
;--------------------------------
;--------------------------------
Neighbor(row,col){
return Trim( ""
. "," row ":" col-3
. "," row ":" col+3
. "," row-3 ":" col
. "," row+3 ":" col
. "," row+2 ":" col+2
. "," row+2 ":" col-2
. "," row-2 ":" col+2
. "," row-2 ":" col-2
, ",")
}
;--------------------------------
map(Grid){
for i, row in Grid
{
for j, element in row
line .= (A_Index > 1 ? "`t" : "") element
map .= (map<>""?"`n":"") line
line := ""
}
return StrReplace(map, ">")
}
Examples:
;--------------------------------
Grid := [["",0 ,0 ,"",0 ,0 ,""]
,[0 ,0 ,0 ,0 ,0 ,0 ,0]
,[0 ,0 ,0 ,0 ,0 ,0 ,0]
,["",0 ,0 ,0 ,0 ,0 ,""]
,["","",0 ,0 ,0 ,"",""]
,["","","",0 ,"","",""]]
;--------------------------------
; find locked cells, find max value
Locked := []
max := 1
for i, line in Grid
for j, element in line
if (element >= 0)
max++ , list .= i ":" j "`n"
random, rnd, 1, %max%
loop, parse, list, `n, `r
if (A_Index = rnd)
{
row := StrSplit(A_LoopField, ":").1
col := StrSplit(A_LoopField, ":").2
Grid[row,col] := 1
Locked[1] := row ":" col "," Neighbor(row, col)
break
}
;--------------------------------
MsgBox, 262144, ,% SolveHopido(Grid, Locked, Max, row, col)
return
Outputs:
17 24 16 25
22 8 11 21 7 10 20
13 2 5 14 1 4 15
18 23 9 19 26
12 3 6
27
C++
#include <vector>
#include <sstream>
#include <iostream>
#include <iterator>
#include <stdlib.h>
#include <string.h>
using namespace std;
struct node
{
int val;
unsigned char neighbors;
};
class nSolver
{
public:
nSolver()
{
dx[0] = -2; dy[0] = -2; dx[1] = -2; dy[1] = 2;
dx[2] = 2; dy[2] = -2; dx[3] = 2; dy[3] = 2;
dx[4] = -3; dy[4] = 0; dx[5] = 3; dy[5] = 0;
dx[6] = 0; dy[6] = -3; dx[7] = 0; dy[7] = 3;
}
void solve( vector<string>& puzz, int max_wid )
{
if( puzz.size() < 1 ) return;
wid = max_wid; hei = static_cast<int>( puzz.size() ) / wid;
int len = wid * hei, c = 0; max = len;
arr = new node[len]; memset( arr, 0, len * sizeof( node ) );
for( vector<string>::iterator i = puzz.begin(); i != puzz.end(); i++ )
{
if( ( *i ) == "*" ) { max--; arr[c++].val = -1; continue; }
arr[c].val = atoi( ( *i ).c_str() );
c++;
}
solveIt(); c = 0;
for( vector<string>::iterator i = puzz.begin(); i != puzz.end(); i++ )
{
if( ( *i ) == "." )
{
ostringstream o; o << arr[c].val;
( *i ) = o.str();
}
c++;
}
delete [] arr;
}
private:
bool search( int x, int y, int w )
{
if( w > max ) return true;
node* n = &arr[x + y * wid];
n->neighbors = getNeighbors( x, y );
for( int d = 0; d < 8; d++ )
{
if( n->neighbors & ( 1 << d ) )
{
int a = x + dx[d], b = y + dy[d];
if( arr[a + b * wid].val == 0 )
{
arr[a + b * wid].val = w;
if( search( a, b, w + 1 ) ) return true;
arr[a + b * wid].val = 0;
}
}
}
return false;
}
unsigned char getNeighbors( int x, int y )
{
unsigned char c = 0; int a, b;
for( int xx = 0; xx < 8; xx++ )
{
a = x + dx[xx], b = y + dy[xx];
if( a < 0 || b < 0 || a >= wid || b >= hei ) continue;
if( arr[a + b * wid].val > -1 ) c |= ( 1 << xx );
}
return c;
}
void solveIt()
{
int x, y, z; findStart( x, y, z );
if( z == 99999 ) { cout << "\nCan't find start point!\n"; return; }
search( x, y, z + 1 );
}
void findStart( int& x, int& y, int& z )
{
for( int b = 0; b < hei; b++ )
for( int a = 0; a < wid; a++ )
if( arr[a + wid * b].val == 0 )
{
x = a; y = b; z = 1;
arr[a + wid * b].val = z;
return;
}
}
int wid, hei, max, dx[8], dy[8];
node* arr;
};
int main( int argc, char* argv[] )
{
int wid; string p;
p = "* . . * . . * . . . . . . . . . . . . . . * . . . . . * * * . . . * * * * * . * * *"; wid = 7;
istringstream iss( p ); vector<string> puzz;
copy( istream_iterator<string>( iss ), istream_iterator<string>(), back_inserter<vector<string> >( puzz ) );
nSolver s; s.solve( puzz, wid );
int c = 0;
for( vector<string>::iterator i = puzz.begin(); i != puzz.end(); i++ )
{
if( ( *i ) != "*" && ( *i ) != "." )
{
if( atoi( ( *i ).c_str() ) < 10 ) cout << "0";
cout << ( *i ) << " ";
}
else cout << " ";
if( ++c >= wid ) { cout << endl; c = 0; }
}
cout << endl << endl;
return system( "pause" );
}
{{out}}
01 04 12 03
27 16 19 22 15 18 21
05 08 11 02 07 10 13
23 26 17 20 25
06 09 14
24
C#
The same solver can solve Hidato, Holy Knight's Tour, Hopido and Numbrix puzzles.
The input can be an array of strings if each cell is one character. The length of the first row must be the number of columns in the puzzle.
Any non-numeric value indicates a no-go.
If there are cells that require more characters, then a 2-dimensional array of ints must be used. Any number < 0 indicates a no-go.
using System.Collections;
using System.Collections.Generic;
using static System.Console;
using static System.Math;
using static System.Linq.Enumerable;
public class Solver
{
private static readonly (int dx, int dy)[]
//other puzzle types elided
hopidoMoves = {(-3,0),(0,-3),(0,3),(3,0),(-2,-2),(-2,2),(2,-2),(2,2)},
private (int dx, int dy)[] moves;
public static void Main()
{
Print(new Solver(hopidoMoves).Solve(false,
".00.00.",
"0000000",
"0000000",
".00000.",
"..000..",
"...0..."
));
}
public Solver(params (int dx, int dy)[] moves) => this.moves = moves;
public int[,] Solve(bool circular, params string[] puzzle)
{
var (board, given, count) = Parse(puzzle);
return Solve(board, given, count, circular);
}
public int[,] Solve(bool circular, int[,] puzzle)
{
var (board, given, count) = Parse(puzzle);
return Solve(board, given, count, circular);
}
private int[,] Solve(int[,] board, BitArray given, int count, bool circular)
{
var (height, width) = (board.GetLength(0), board.GetLength(1));
bool solved = false;
for (int x = 0; x < height && !solved; x++) {
solved = Range(0, width).Any(y => Solve(board, given, circular, (height, width), (x, y), count, (x, y), 1));
if (solved) return board;
}
return null;
}
private bool Solve(int[,] board, BitArray given, bool circular,
(int h, int w) size, (int x, int y) start, int last, (int x, int y) current, int n)
{
var (x, y) = current;
if (x < 0 || x >= size.h || y < 0 || y >= size.w) return false;
if (board[x, y] < 0) return false;
if (given[n - 1]) {
if (board[x, y] != n) return false;
} else if (board[x, y] > 0) return false;
board[x, y] = n;
if (n == last) {
if (!circular || AreNeighbors(start, current)) return true;
}
for (int i = 0; i < moves.Length; i++) {
var move = moves[i];
if (Solve(board, given, circular, size, start, last, (x + move.dx, y + move.dy), n + 1)) return true;
}
if (!given[n - 1]) board[x, y] = 0;
return false;
bool AreNeighbors((int x, int y) p1, (int x, int y) p2) => moves.Any(m => (p2.x + m.dx, p2.y + m.dy).Equals(p1));
}
private static (int[,] board, BitArray given, int count) Parse(string[] input)
{
(int height, int width) = (input.Length, input[0].Length);
int[,] board = new int[height, width];
int count = 0;
for (int x = 0; x < height; x++) {
string line = input[x];
for (int y = 0; y < width; y++) {
board[x, y] = y < line.Length && char.IsDigit(line[y]) ? line[y] - '0' : -1;
if (board[x, y] >= 0) count++;
}
}
BitArray given = Scan(board, count, height, width);
return (board, given, count);
}
private static (int[,] board, BitArray given, int count) Parse(int[,] input)
{
(int height, int width) = (input.GetLength(0), input.GetLength(1));
int[,] board = new int[height, width];
int count = 0;
for (int x = 0; x < height; x++)
for (int y = 0; y < width; y++)
if ((board[x, y] = input[x, y]) >= 0) count++;
BitArray given = Scan(board, count, height, width);
return (board, given, count);
}
private static BitArray Scan(int[,] board, int count, int height, int width)
{
var given = new BitArray(count + 1);
for (int x = 0; x < height; x++)
for (int y = 0; y < width; y++)
if (board[x, y] > 0) given[board[x, y] - 1] = true;
return given;
}
private static void Print(int[,] board)
{
if (board == null) {
WriteLine("No solution");
} else {
int w = board.Cast<int>().Where(i => i > 0).Max(i => (int?)Ceiling(Log10(i+1))) ?? 1;
string e = new string('-', w);
foreach (int x in Range(0, board.GetLength(0)))
WriteLine(string.Join(" ", Range(0, board.GetLength(1))
.Select(y => board[x, y] < 0 ? e : board[x, y].ToString().PadLeft(w, ' '))));
}
WriteLine();
}
}
{{out}}
-- 1 8 -- 2 7 -- 25 22 19 26 23 20 27 9 16 13 10 17 14 11 -- 4 24 21 3 6 -- -- -- 18 15 12 -- -- -- -- -- 5 -- -- -- ``` ## D {{trans|C++}} From the refactored C++ version with more precise typing. This tries all possible start positions. The HopidoPuzzle struct is created at compile-time, so its pre-conditions can catch most malformed puzzles at compile-time. ```d import std.stdio, std.conv, std.string, std.range, std.algorithm, std.typecons; struct HopidoPuzzle { private alias InputCellBaseType = char; private enum InputCell : InputCellBaseType { available = '#', unavailable = '.' } private alias Cell = uint; private enum : Cell { unknownCell = 0, unavailableCell = Cell.max } // Special Cell values. // Neighbors, [shift row, shift column]. private static immutable int[2][8] shifts = [[-2, -2], [2, -2], [-2, 2], [2, 2], [ 0, -3], [0, 3], [-3, 0], [3, 0]]; private immutable size_t gridWidth, gridHeight; private immutable Cell nAvailableCells; private /*immutable*/ const InputCell[] flatPuzzle; private Cell[] grid; // Flattened mutable game grid. @disable this(); this(in string[] rawPuzzle) pure @safe in { assert(!rawPuzzle.empty); assert(!rawPuzzle[0].empty); assert(rawPuzzle.all!(row => row.length == rawPuzzle[0].length)); // Is rectangular. // Has at least one start point. assert(rawPuzzle.join.representation.canFind(InputCell.available)); } body { //immutable puzzle = rawPuzzle.to!(InputCell[][]); immutable puzzle = rawPuzzle.map!representation.array.to!(InputCell[][]); gridWidth = puzzle[0].length; gridHeight = puzzle.length; flatPuzzle = puzzle.join; nAvailableCells = flatPuzzle.representation.count!(ic => ic == InputCell.available); grid = flatPuzzle .representation .map!(ic => ic == InputCell.available ? unknownCell : unavailableCell) .array; } Nullable!(string[][]) solve() pure /*nothrow*/ @safe out(result) { if (!result.isNull) assert(!grid.canFind(unknownCell)); } body { // Try all possible start positions. foreach (immutable r; 0 .. gridHeight) { foreach (immutable c; 0 .. gridWidth) { immutable pos = r * gridWidth + c; if (grid[pos] == unknownCell) { immutable Cell startCell = 1; // To lay the first cell value. grid[pos] = startCell; // Try. if (search(r, c, startCell + 1)) { auto result = zip(flatPuzzle, grid) //.map!({p, c} => ... .map!(pc => (pc[0] == InputCell.available) ? pc[1].text : InputCellBaseType(pc[0]).text) .array .chunks(gridWidth) .array; return typeof(return)(result); } grid[pos] = unknownCell; // Restore. } } } return typeof(return)(); } private bool search(in size_t r, in size_t c, in Cell cell) pure nothrow @safe @nogc { if (cell > nAvailableCells) return true; // One solution found. foreach (immutable sh; shifts) { immutable r2 = r + sh[0], c2 = c + sh[1], pos = r2 * gridWidth + c2; // No need to test for >= 0 because uint wraps around. if (c2 < gridWidth && r2 < gridHeight && grid[pos] == unknownCell) { grid[pos] = cell; // Try. if (search(r2, c2, cell + 1)) return true; grid[pos] = unknownCell; // Restore. } } return false; } } void main() @safe { // enum HopidoPuzzle to catch malformed puzzles at compile-time. enum puzzle = ".##.##. ####### ####### .#####. ..###.. ...#...".split.HopidoPuzzle; immutable solution = puzzle.solve; // Solved at run-time. if (solution.isNull) writeln("No solution found."); else writefln("One solution:\n%(%-(%2s %)\n%)", solution); } ``` {{out}} ```txt One solution: . 1 4 . 12 3 . 27 16 19 22 15 18 21 5 8 11 2 7 10 13 . 23 26 17 20 25 . . . 6 9 14 . . . . . 24 . . . ``` ## Elixir {{trans|Ruby}} This solution uses HLPsolver from [[Solve_a_Hidato_puzzle#Elixir | here]] ```elixir # require HLPsolver adjacent = [{-3, 0}, {0, -3}, {0, 3}, {3, 0}, {-2, -2}, {-2, 2}, {2, -2}, {2, 2}] board = """ . 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . . . 0 0 0 . . . . . 1 . . . """ HLPsolver.solve(board, adjacent) ``` {{out}} ```txt Problem: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Solution: 5 25 17 3 27 13 10 7 14 11 8 24 21 18 4 22 19 16 6 26 12 9 2 23 20 15 1 ``` ## Go {{trans|Java}} ```go package main import ( "fmt" "sort" ) var board = []string{ ".00.00.", "0000000", "0000000", ".00000.", "..000..", "...0...", } var moves = [][2]int{ {-3, 0}, {0, 3}, {3, 0}, {0, -3}, {2, 2}, {2, -2}, {-2, 2}, {-2, -2}, } var grid [][]int var totalToFill = 0 func solve(r, c, count int) bool { if count > totalToFill { return true } nbrs := neighbors(r, c) if len(nbrs) == 0 && count != totalToFill { return false } sort.Slice(nbrs, func(i, j int) bool { return nbrs[i][2] < nbrs[j][2] }) for _, nb := range nbrs { r = nb[0] c = nb[1] grid[r][c] = count if solve(r, c, count+1) { return true } grid[r][c] = 0 } return false } func neighbors(r, c int) (nbrs [][3]int) { for _, m := range moves { x := m[0] y := m[1] if grid[r+y][c+x] == 0 { num := countNeighbors(r+y, c+x) - 1 nbrs = append(nbrs, [3]int{r + y, c + x, num}) } } return } func countNeighbors(r, c int) int { num := 0 for _, m := range moves { if grid[r+m[1]][c+m[0]] == 0 { num++ } } return num } func printResult() { for _, row := range grid { for _, i := range row { if i == -1 { fmt.Print(" ") } else { fmt.Printf("%2d ", i) } } fmt.Println() } } func main() { nRows := len(board) + 6 nCols := len(board[0]) + 6 grid = make([][]int, nRows) for r := 0; r < nRows; r++ { grid[r] = make([]int, nCols) for c := 0; c < nCols; c++ { grid[r][c] = -1 } for c := 3; c < nCols-3; c++ { if r >= 3 && r < nRows-3 { if board[r-3][c-3] == '0' { grid[r][c] = 0 totalToFill++ } } } } pos, r, c := -1, 0, 0 for { for { pos++ r = pos / nCols c = pos % nCols if grid[r][c] != -1 { break } } grid[r][c] = 1 if solve(r, c, 2) { break } grid[r][c] = 0 if pos >= nRows*nCols { break } } printResult() } ``` {{out}} ```txt 1 22 14 21 18 10 7 17 11 8 16 5 24 27 4 23 26 13 2 19 9 15 20 6 25 12 3 ``` ==Icon and {{header|Unicon}}== Minor variant of [[Solve_a_Holy_Knight's_tour]]. Works in Unicon only. ```unicon global nCells, cMap, best record Pos(r,c) procedure main(A) puzzle := showPuzzle("Input",readPuzzle()) QMouse(puzzle,findStart(puzzle),&null,0) showPuzzle("Output", solvePuzzle(puzzle)) | write("No solution!") end procedure readPuzzle() # Start with a reduced puzzle space p := [[-1],[-1]] nCells := maxCols := 0 every line := !&input do { put(p,[: -1 | -1 | gencells(line) | -1 | -1 :]) maxCols <:= *p[-1] } every put(p, [-1]|[-1]) # Now normalize all rows to the same length every i := 1 to *p do p[i] := [: !p[i] | (|-1\(maxCols - *p[i])) :] return p end procedure gencells(s) static WS, NWS initial { NWS := ~(WS := " \t") cMap := table() # Map to/from internal model cMap["#"] := -1; cMap["_"] := 0 cMap[-1] := " "; cMap[0] := "_" } s ? while not pos(0) do { w := (tab(many(WS))|"", tab(many(NWS))) | break w := numeric(\cMap[w]|w) if -1 ~= w then nCells +:= 1 suspend w } end procedure showPuzzle(label, p) write(label," with ",nCells," cells:") every r := !p do { every c := !r do writes(right((\cMap[c]|c),*nCells+1)) write() } return p end procedure findStart(p) if \p[r := !*p][c := !*p[r]] = 1 then return Pos(r,c) end procedure solvePuzzle(puzzle) if path := \best then { repeat { loc := path.getLoc() puzzle[loc.r][loc.c] := path.getVal() path := \path.getParent() | break } return puzzle } end class QMouse(puzzle, loc, parent, val) method getVal(); return val; end method getLoc(); return loc; end method getParent(); return parent; end method atEnd(); return nCells = val; end method visit(r,c) if /best & validPos(r,c) then return Pos(r,c) end method validPos(r,c) v := val+1 xv := (0 <= puzzle[r][c]) | fail if xv = (v|0) then { # make sure this path hasn't already gone there ancestor := self while xl := (ancestor := \ancestor.getParent()).getLoc() do if (xl.r = r) & (xl.c = c) then fail return } end initially val := val+1 if atEnd() then return best := self QMouse(puzzle, visit(loc.r-3,loc.c), self, val) QMouse(puzzle, visit(loc.r-2,loc.c-2), self, val) QMouse(puzzle, visit(loc.r, loc.c-3), self, val) QMouse(puzzle, visit(loc.r+2,loc.c-2), self, val) QMouse(puzzle, visit(loc.r+3,loc.c), self, val) QMouse(puzzle, visit(loc.r+2,loc.c+2), self, val) QMouse(puzzle, visit(loc.r, loc.c+3), self, val) QMouse(puzzle, visit(loc.r-2,loc.c+2), self, val) end ``` Sample run: ```txt ->hopido``` ## Java {{works with|Java|8}} ```java import java.util.*; public class Hopido { final static String[] board = { ".00.00.", "0000000", "0000000", ".00000.", "..000..", "...0..."}; final static int[][] moves = {{-3, 0}, {0, 3}, {3, 0}, {0, -3}, {2, 2}, {2, -2}, {-2, 2}, {-2, -2}}; static int[][] grid; static int totalToFill; public static void main(String[] args) { int nRows = board.length + 6; int nCols = board[0].length() + 6; grid = new int[nRows][nCols]; for (int r = 0; r < nRows; r++) { Arrays.fill(grid[r], -1); for (int c = 3; c < nCols - 3; c++) if (r >= 3 && r < nRows - 3) { if (board[r - 3].charAt(c - 3) == '0') { grid[r][c] = 0; totalToFill++; } } } int pos = -1, r, c; do { do { pos++; r = pos / nCols; c = pos % nCols; } while (grid[r][c] == -1); grid[r][c] = 1; if (solve(r, c, 2)) break; grid[r][c] = 0; } while (pos < nRows * nCols); printResult(); } static boolean solve(int r, int c, int count) { if (count > totalToFill) return true; List nbrs = neighbors(r, c); if (nbrs.isEmpty() && count != totalToFill) return false; Collections.sort(nbrs, (a, b) -> a[2] - b[2]); for (int[] nb : nbrs) { r = nb[0]; c = nb[1]; grid[r][c] = count; if (solve(r, c, count + 1)) return true; grid[r][c] = 0; } return false; } static List neighbors(int r, int c) { List nbrs = new ArrayList<>(); for (int[] m : moves) { int x = m[0]; int y = m[1]; if (grid[r + y][c + x] == 0) { int num = countNeighbors(r + y, c + x) - 1; nbrs.add(new int[]{r + y, c + x, num}); } } return nbrs; } static int countNeighbors(int r, int c) { int num = 0; for (int[] m : moves) if (grid[r + m[1]][c + m[0]] == 0) num++; return num; } static void printResult() { for (int[] row : grid) { for (int i : row) { if (i == -1) System.out.printf("%2s ", ' '); else System.out.printf("%2d ", i); } System.out.println(); } } } ``` ```txt 1 22 14 21 18 10 7 17 11 8 16 5 24 27 4 23 26 13 2 19 9 15 20 6 25 12 3 ``` ## Julia Uses the Hidato puzzle solver module, which has its source code listed [[Solve_a_Hidato_puzzle#Julia | here]] in the Hadato task. ```julia using .Hidato # Note that the . here means to look locally for the module rather than in the libraries const hopid = """ . 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . . . 0 0 0 . . . . . 0 . . . """ const hopidomoves = [[-3, 0], [0, -3], [-2, -2], [-2, 2], [2, -2], [0, 3], [3, 0], [2, 2]] board, maxmoves, fixed, starts = hidatoconfigure(hopid) printboard(board, " 0", " ") hidatosolve(board, maxmoves, hopidomoves, fixed, starts[1][1], starts[1][2], 1) printboard(board) ``` {{output}} ```txt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 15 5 16 1 22 25 2 21 24 27 14 11 8 17 12 9 6 3 20 23 26 19 13 10 7 18 ``` ## Kotlin {{trans|Java}} ```scala // version 1.2.0 val board = listOf( ".00.00.", "0000000", "0000000", ".00000.", "..000..", "...0..." ) val moves = listOf( -3 to 0, 0 to 3, 3 to 0, 0 to -3, 2 to 2, 2 to -2, -2 to 2, -2 to -2 ) lateinit var grid: List var totalToFill = 0 fun solve(r: Int, c: Int, count: Int): Boolean { if (count > totalToFill) return true val nbrs = neighbors(r, c) if (nbrs.isEmpty() && count != totalToFill) return false nbrs.sortBy { it[2] } for (nb in nbrs) { val rr = nb[0] val cc = nb[1] grid[rr][cc] = count if (solve(rr, cc, count + 1)) return true grid[rr][cc] = 0 } return false } fun neighbors(r: Int, c: Int): MutableList { val nbrs = mutableListOf () for (m in moves) { val x = m.first val y = m.second if (grid[r + y][c + x] == 0) { val num = countNeighbors(r + y, c + x) - 1 nbrs.add(intArrayOf(r + y, c + x, num)) } } return nbrs } fun countNeighbors(r: Int, c: Int): Int { var num = 0 for (m in moves) if (grid[r + m.second][c + m.first] == 0) num++ return num } fun printResult() { for (row in grid) { for (i in row) { print(if (i == -1) " " else "%2d ".format(i)) } println() } } fun main(args: Array ) { val nRows = board.size + 6 val nCols = board[0].length + 6 grid = List(nRows) { IntArray(nCols) { -1} } for (r in 0 until nRows) { for (c in 3 until nCols - 3) { if (r in 3 until nRows - 3) { if (board[r - 3][c - 3] == '0') { grid[r][c] = 0 totalToFill++ } } } } var pos = -1 var rr: Int var cc: Int do { do { pos++ rr = pos / nCols cc = pos % nCols } while (grid[rr][cc] == -1) grid[rr][cc] = 1 if (solve(rr, cc, 2)) break grid[rr][cc] = 0 } while (pos < nRows * nCols) printResult() } ``` {{out}} ```txt 1 22 14 21 18 10 7 17 11 8 16 5 24 27 4 23 26 13 2 19 9 15 20 6 25 12 3 ``` ## Perl ```perl #!/usr/bin/perl use strict; # http://www.rosettacode.org/wiki/Solve_a_Hopido_puzzle use warnings; $_ = do { local $/; }; s/./$&$&/g; # double chars my $w = /\n/ && $-[0]; my $wd = 3 * $w + 1; # vertical gap my $wr = 2 * $w + 8; # down right gap my $wl = 2 * $w - 8; # down left gap place($_, '00'); die "No solution\n"; sub place { (local $_, my $last) = @_; (my $new = $last)++; /$last.{10}(?=00)/g and place( s/\G00/$new/r, $new ); # right /(?=00.{10}$last)/g and place( s/\G00/$new/r, $new ); # left /$last.{$wd}(?=00)/gs and place( s/\G00/$new/r, $new ); # down /(?=00.{$wd}$last)/gs and place( s/\G00/$new/r, $new ); # up /$last.{$wr}(?=00)/gs and place( s/\G00/$new/r, $new ); # down right /(?=00.{$wr}$last)/gs and place( s/\G00/$new/r, $new ); # up left /$last.{$wl}(?=00)/gs and place( s/\G00/$new/r, $new ); # down left /(?=00.{$wl}$last)/gs and place( s/\G00/$new/r, $new ); # up right /00/ and return; print "Solution\n\n", s/ / /gr =~ s/0\B/ /gr; exit; } __DATA__ . 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . . . 0 0 0 . . . . . 0 . . . ``` {{out}} ```txt Solution .. 2 24 .. 1 25 .. 7 10 13 6 9 12 5 15 22 19 16 23 20 17 .. 3 8 11 4 26 .. .. .. 14 21 18 .. .. .. .. .. 27 .. .. .. ``` ## Perl 6 This uses a Warnsdorff solver, which cuts down the number of tries by more than a factor of six over the brute force approach. This same solver is used in: * [[Solve a Hidato puzzle#Perl_6|Solve a Hidato puzzle]] * [[Solve a Hopido puzzle#Perl_6|Solve a Hopido puzzle]] * [[Solve a Holy Knight's tour#Perl_6|Solve a Holy Knight's tour]] * [[Solve a Numbrix puzzle#Perl_6|Solve a Numbrix puzzle]] * [[Solve the no connection puzzle#Perl_6|Solve the no connection puzzle]] ```perl6 my @adjacent = [3, 0], [2, -2], [2, 2], [0, -3], [0, 3], [-2, -2], [-2, 2], [-3, 0]; solveboard q:to/END/; . _ _ . _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . . . _ _ _ . . . . . 1 . . . END sub solveboard($board) { my $max = +$board.comb(/\w+/); my $width = $max.chars; my @grid; my @known; my @neigh; my @degree; @grid = $board.lines.map: -> $line { [ $line.words.map: { /^_/ ?? 0 !! /^\./ ?? Rat !! $_ } ] } sub neighbors($y,$x --> List) { eager gather for @adjacent { my $y1 = $y + .[0]; my $x1 = $x + .[1]; take [$y1,$x1] if defined @grid[$y1][$x1]; } } for ^@grid -> $y { for ^@grid[$y] -> $x { if @grid[$y][$x] -> $v { @known[$v] = [$y,$x]; } if @grid[$y][$x].defined { @neigh[$y][$x] = neighbors($y,$x); @degree[$y][$x] = +@neigh[$y][$x]; } } } print "\e[0H\e[0J"; my $tries = 0; try_fill 1, @known[1]; sub try_fill($v, $coord [$y,$x] --> Bool) { return True if $v > $max; $tries++; my $old = @grid[$y][$x]; return False if +$old and $old != $v; return False if @known[$v] and @known[$v] !eqv $coord; @grid[$y][$x] = $v; # conjecture grid value print "\e[0H"; # show conjectured board for @grid -> $r { say do for @$r { when Rat { ' ' x $width } when 0 { '_' x $width } default { .fmt("%{$width}d") } } } my @neighbors = @neigh[$y][$x][]; my @degrees; for @neighbors -> \n [$yy,$xx] { my $d = --@degree[$yy][$xx]; # conjecture new degrees push @degrees[$d], n; # and categorize by degree } for @degrees.grep(*.defined) -> @ties { for @ties.reverse { # reverse works better for this hidato anyway return True if try_fill $v + 1, $_; } } for @neighbors -> [$yy,$xx] { ++@degree[$yy][$xx]; # undo degree conjectures } @grid[$y][$x] = $old; # undo grid value conjecture return False; } say "$tries tries"; } ``` {{out}} ```txt 21 4 20 3 26 12 15 25 11 14 24 17 6 9 18 5 8 19 22 27 13 23 2 16 7 10 1 59 tries ``` ## Phix Simple brute force approach. ```Phix sequence board integer limit, tries constant ROW = 1, COL = 2 constant moves = {{-2,-2},{-2,2},{2,-2},{2,2},{-3,0},{3,0},{0,-3},{0,3}} function solve(integer row, integer col, integer n) integer nrow, ncol tries+= 1 if n>limit then return 1 end if for move=1 to length(moves) do nrow = row+moves[move][ROW] ncol = col+moves[move][COL]*3 if nrow>=1 and nrow<=length(board) and ncol>=1 and ncol<=length(board[row]) and board[nrow][ncol]=' ' then board[nrow][ncol-1..ncol] = sprintf("%2d",n) if solve(nrow,ncol,n+1) then return 1 end if board[nrow][ncol-1..ncol] = " " end if end for return 0 end function procedure Hopido(sequence s, integer w, integer h) integer x, y atom t0 = time() board = split(s,'\n') limit = 0 for x=1 to h do for y=3 to w*3 by 3 do if board[x][y]='0' then board[x][y] = ' ' limit += 1 end if end for end for while 1 do x = rand(h) y = rand(w)*3 if board[x][y]=' ' then exit end if end while board[x][y] = '1' tries = 0 if solve(x,y,2) then puts(1,join(board,"\n")) printf(1,"\nsolution found in %d tries (%3.2fs)\n",{tries,time()-t0}) else puts(1,"no solutions found\n") end if end procedure constant board1 = """ . 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . . . 0 0 0 . . . . . 0 . . .""" Hopido(board1,7,6) ``` The best and worse cases observed were: ```txt . 13 22 . 14 11 . 6 3 25 7 4 1 27 23 20 17 12 21 18 15 . 8 5 2 26 10 . . . 24 19 16 . . . . . 9 . . . solution found in 46 tries (0.00s) . 20 11 . 19 22 . 2 5 8 1 4 7 27 10 13 16 21 12 15 18 . 25 3 6 26 23 . . . 9 14 17 . . . . . 24 . . . solution found in 67702 tries (0.09s) ``` ## Python ```python from sys import stdout neighbours = [[2, 2], [-2, 2], [2, -2], [-2, -2], [3, 0], [0, 3], [-3, 0], [0, -3]] cnt = 0 pWid = 0 pHei = 0 def is_valid(a, b): return -1 < a < pWid and -1 < b < pHei def iterate(pa, x, y, v): if v > cnt: return 1 for i in range(len(neighbours)): a = x + neighbours[i][0] b = y + neighbours[i][1] if is_valid(a, b) and pa[a][b] == 0: pa[a][b] = v r = iterate(pa, a, b, v + 1) if r == 1: return r pa[a][b] = 0 return 0 def solve(pz, w, h): global cnt, pWid, pHei pa = [[-1 for j in range(h)] for i in range(w)] f = 0 pWid = w pHei = h for j in range(h): for i in range(w): if pz[f] == "1": pa[i][j] = 0 cnt += 1 f += 1 for y in range(h): for x in range(w): if pa[x][y] == 0: pa[x][y] = 1 if 1 == iterate(pa, x, y, 2): return 1, pa pa[x][y] = 0 return 0, pa r = solve("011011011111111111111011111000111000001000", 7, 6) if r[0] == 1: for j in range(6): for i in range(7): if r[1][i][j] == -1: stdout.write(" ") else: stdout.write(" {:0{}d}".format(r[1][i][j], 2)) print() else: stdout.write("No solution!") ``` {{out}} ```txt 01 25 17 03 27 13 10 07 14 11 08 24 21 18 02 22 19 16 06 26 12 09 04 23 20 15 05 ``` ## Racket This solution uses the module "hidato-family-solver.rkt" from [[Solve a Numbrix puzzle#Racket]]. The difference between the two is essentially the neighbourhood function. ```racket #lang racket (require "hidato-family-solver.rkt") (define hoppy-moore-neighbour-offsets '((+3 0) (-3 0) (0 +3) (0 -3) (+2 +2) (-2 -2) (-2 +2) (+2 -2))) (define solve-hopido (solve-hidato-family hoppy-moore-neighbour-offsets)) (displayln (puzzle->string (solve-hopido #(#(_ 0 0 _ 0 0 _) #(0 0 0 0 0 0 0) #(0 0 0 0 0 0 0) #(_ 0 0 0 0 0 _) #(_ _ 0 0 0 _ _) #(_ _ _ 0 _ _ _))))) ``` {{out}} ```txt _ 2 20 _ 3 19 _ 7 10 13 6 9 12 5 15 22 25 16 21 24 27 _ 1 8 11 4 18 _ _ _ 14 23 26 _ _ _ _ _ 17 _ _ _ ``` ## REXX This REXX program is a slightly modified version of the REXX '''Hidato''' program. No particular effort was made to reduce the elapsed time in solving the puzzle. ```rexx /*REXX program solves a Hopido puzzle, it also displays the puzzle and the solution. */ call time 'Reset' /*reset the REXX elapsed timer to zero.*/ maxR=0; maxC=0; maxX=0; minR=9e9; minC=9e9; minX=9e9; cells=0; @.= parse arg xxx /*get the cell definitions from the CL.*/ xxx=translate(xxx, , "/\;:_", ',') /*also allow other characters as comma.*/ do while xxx\=''; parse var xxx r c marks ',' xxx do while marks\=''; _=@.r.c parse var marks x marks if datatype(x,'N') then x=x/1 /*normalize X. */ minR=min(minR,r); maxR=max(maxR,r); minC=min(minC,c); maxC=max(maxC,c) if x==1 then do; !r=r; !c=c; end /*the START cell. */ if _\=='' then call err "cell at" r c 'is already occupied with:' _ @.r.c=x; c=c+1; cells=cells+1 /*assign a mark. */ if x==. then iterate /*is a hole? Skip*/ if \datatype(x,'W') then call err 'illegal marker specified:' x minX=min(minX,x); maxX=max(maxX,x) /*min and max X. */ end /*while marks¬='' */ end /*while xxx ¬='' */ call show /* [↓] is used for making fast moves. */ Nr = '0 3 0 -3 -2 2 2 -2' /*possible row for the next move. */ Nc = '3 0 -3 0 2 -2 2 -2' /* " column " " " " */ pMoves=words(Nr) /*the number of possible moves. */ do i=1 for pMoves; Nr.i=word(Nr, i); Nc.i=word(Nc,i); end /*i*/ if \next(2,!r,!c) then call err 'No solution possible for this Hopido puzzle.' say 'A solution for the Hopido exists.'; say; call show etime= format(time('Elapsed'), , 2) /*obtain the elapsed time (in seconds).*/ if etime<.1 then say 'and took less than 1/10 of a second.' else say 'and took' etime "seconds." exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ err: say; say '***error*** (from Hopido): ' arg(1); say; exit 13 /*──────────────────────────────────────────────────────────────────────────────────────*/ next: procedure expose @. Nr. Nc. cells pMoves; parse arg #,r,c; ##=#+1 do t=1 for pMoves /* [↓] try some moves. */ parse value r+Nr.t c+Nc.t with nr nc /*next move coördinates*/ if @.nr.nc==. then do; @.nr.nc=# /*let's try this move. */ if #==cells then leave /*is this the last move?*/ if next(##,nr,nc) then return 1 @.nr.nc=. /*undo the above move. */ iterate /*go & try another move.*/ end if @.nr.nc==# then do /*this a fill-in move ? */ if #==cells then return 1 /*this is the last move.*/ if next(##,nr,nc) then return 1 /*a fill-in move. */ end end /*t*/ return 0 /*This ain't working. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ show: if maxR<1 | maxC<1 then call err 'no legal cell was specified.' if minX<1 then call err 'no 1 was specified for the puzzle start' w=max(2,length(cells)); do r=maxR to minR by -1; _= do c=minC to maxC; _=_ right(@.r.c,w); end /*c*/ say _ end /*r*/ say; return ``` '''output''' when the input is: 1 4 1 \2 3 . . . \3 2 . . . . . \4 1 . . . . . . . \5 1 . . . . . . . \6 2 . . \6 5 . . ```txt . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A solution for the Hopido exists. 5 12 4 11 8 22 25 7 21 24 27 13 16 19 2 15 18 3 6 9 23 26 10 14 17 20 1 and took less than 1/10 of a second. ``` ## Ruby This solution uses HLPsolver from [[Solve_a_Hidato_puzzle#With_Warnsdorff | here]] ```ruby require 'HLPsolver' ADJACENT = [[-3, 0], [0, -3], [0, 3], [3, 0], [-2, -2], [-2, 2], [2, -2], [2, 2]] board1 = < =0}] } } if {![info exist start]} { return -code error "no starting position found" } } method moves {} { return { 0 -3 -2 -2 -2 2 -3 0 3 0 -2 2 2 2 0 3 } } method Moves {g r c} { set valid {} foreach {dr dc} [my moves] { set R [expr {$r + $dr}] set C [expr {$c + $dc}] if {[lindex $g $R $C] == 0} { lappend valid $R $C } } return $valid } method Solve {g r c v} { lset g $r $c [incr v] if {$v >= $limit} {return $g} foreach {r c} [my Moves $g $r $c] { return [my Solve $g $r $c $v] } return -code continue } method solve {} { while {[incr i]==1} { set grid [my Solve $grid {*}$start 0] return } return -code error "solution not possible" } method solution {} {return $grid} } proc parsePuzzle {str} { foreach line [split $str "\n"] { if {[string trim $line] eq ""} continue lappend rows [lmap {- c} [regexp -all -inline {(.)\s?} $line] { string map {" " -1 "." -1} $c }] } set len [tcl::mathfunc::max {*}[lmap r $rows {llength $r}]] for {set i 0} {$i < [llength $rows]} {incr i} { while {[llength [lindex $rows $i]] < $len} { lset rows $i end+1 -1 } } return $rows } proc showPuzzle {grid name} { foreach row $grid {foreach cell $row {incr c [expr {$cell>=0}]}} set len [string length $c] set u [string repeat "_" $len] puts "$name with $c cells" foreach row $grid { puts [format " %s" [join [lmap c $row { format "%*s" $len [if {$c==-1} list elseif {$c==0} {set u} {set c}] }]]] } } set puzzle [parsePuzzle { . 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . . . 0 0 0 . . . . . 1 . . . }] showPuzzle $puzzle "Input" HopidoSolver create hop $puzzle hop solve showPuzzle [hop solution] "Output" ``` {{out}} ```txt Input with 27 cells __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ 1 Output with 27 cells 3 6 23 7 27 11 14 26 10 13 25 5 17 20 4 16 19 22 2 9 12 24 8 15 18 21 1 ``` ## zkl This solution uses the code from [[Solve_a_Numbrix_puzzle#zkl]] ```zkl hi:= // 0==empty cell, X==not a cell #<<< " X 0 0 X 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 X X X 0 0 0 X X X X X 0 X X X"; #<<< adjacent:=T( T(-3,0), T(-2,-2), T(-2,2), T(0,-3), T(0,3), T(2,-2), T(2,2), T(3,0) ); puzzle:=Puzzle(hi,adjacent); puzzle.print_board(); puzzle.solve(); println(); puzzle.print_board(); println(); ``` {{out}} ```txt Number of cells = 27 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ 1 8 2 9 12 24 21 13 25 22 14 19 6 3 18 7 4 27 16 11 23 15 10 20 5 26 17 ``` [[Category:Puzzles]]