⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

{{task}} {{wikipedia|Graph}} [[Category:Algorithm]]

Tarjan's algorithm is an algorithm in graph theory for finding the strongly connected components of a graph. It runs in linear time, matching the time bound for alternative methods including Kosaraju's algorithm and the path-based strong component algorithm. Tarjan's Algorithm is named for its discoverer, Robert Tarjan.

;References:

  • The article on [[wp:Tarjan's_strongly_connected_components_algorithm|Wikipedia]].

C#

using System;
using System.Collections.Generic;

class Node
{
	public int LowLink { get; set; }
	public int Index { get; set; }
	public int N { get; }

	public Node(int n)
	{
		N = n;
		Index = -1;
		LowLink = 0;
	}
}

class Graph
{
	public HashSet<Node> V { get; }
	public Dictionary<Node, HashSet<Node>> Adj { get; }

	/// <summary>
	/// Tarjan's strongly connected components algorithm
	/// </summary>
	public void Tarjan()
	{
		var index = 0; // number of nodes
		var S = new Stack<Node>();

		Action<Node> StrongConnect = null;
		StrongConnect = (v) =>
		{
			// Set the depth index for v to the smallest unused index
			v.Index = index;
			v.LowLink = index;

			index++;
			S.Push(v);

			// Consider successors of v
			foreach (var w in Adj[v])
				if (w.Index < 0)
				{
					// Successor w has not yet been visited; recurse on it
					StrongConnect(w);
					v.LowLink = Math.Min(v.LowLink, w.LowLink);
				}
				else if (S.Contains(w))
					// Successor w is in stack S and hence in the current SCC
					v.LowLink = Math.Min(v.LowLink, w.Index);

			// If v is a root node, pop the stack and generate an SCC
			if (v.LowLink == v.Index)
			{
				Console.Write("SCC: ");

				Node w;
				do
				{
					w = S.Pop();
					Console.Write(w.N + " ");
				} while (w != v);

				Console.WriteLine();
			}
		};

		foreach (var v in V)
			if (v.Index < 0)
				StrongConnect(v);
	}
}

Go

package main

import (
    "fmt"
    "math/big"
)

// (same data as zkl example)
var g = [][]int{
    0: {1},
    2: {0},
    5: {2, 6},
    6: {5},
    1: {2},
    3: {1, 2, 4},
    4: {5, 3},
    7: {4, 7, 6},
}

func main() {
    tarjan(g, func(c []int) { fmt.Println(c) })
}

// the function calls the emit argument for each component identified.
// each component is a list of nodes.
func tarjan(g [][]int, emit func([]int)) {
    var indexed, stacked big.Int
    index := make([]int, len(g))
    lowlink := make([]int, len(g))
    x := 0
    var S []int
    var sc func(int) bool
    sc = func(n int) bool {
        index[n] = x
        indexed.SetBit(&indexed, n, 1)
        lowlink[n] = x
        x++
        S = append(S, n)
        stacked.SetBit(&stacked, n, 1)
        for _, nb := range g[n] {
            if indexed.Bit(nb) == 0 {
                if !sc(nb) {
                    return false
                }
                if lowlink[nb] < lowlink[n] {
                    lowlink[n] = lowlink[nb]
                }
            } else if stacked.Bit(nb) == 1 {
                if index[nb] < lowlink[n] {
                    lowlink[n] = index[nb]
                }
            }
        }
        if lowlink[n] == index[n] {
            var c []int
            for {
                last := len(S) - 1
                w := S[last]
                S = S[:last]
                stacked.SetBit(&stacked, w, 0)
                c = append(c, w)
                if w == n {
                    emit(c)
                    break
                }
            }
        }
        return true
    }
    for n := range g {
        if indexed.Bit(n) == 0 && !sc(n) {
            return
        }
    }
}

{{out}}


[2 1 0]
[6 5]
[4 3]
[7]

Julia

LightGraphs uses Tarjan's algorithm by default. The package can also use Kosaraju's algorithm with the function strongly_connected_components_kosaraju().

using LightGraphs

edge_list=[(1,2),(3,1),(6,3),(6,7),(7,6),(2,3),(4,2),(4,3),(4,5),(5,6),(5,4),(8,5),(8,8),(8,7)]

grph = SimpleDiGraph(Edge.(edge_list))

tarj = strongly_connected_components(grph)

inzerobase(arrarr) = map(x -> sort(x .- 1, rev=true), arrarr)

println("Results in the zero-base scheme: $(inzerobase(tarj))")

{{out}}


Results in the zero-base scheme: Array{Int64,1}[[2, 1, 0], [6, 5], [4, 3], [7]]

Kotlin

// version 1.1.3

import java.util.Stack

typealias Nodes = List<Node>

class Node(val n: Int) {
    var index   = -1  // -1 signifies undefined
    var lowLink = -1
    var onStack = false

    override fun toString()  = n.toString()
}

class DirectedGraph(val vs: Nodes, val es: Map<Node, Nodes>)

fun tarjan(g: DirectedGraph): List<Nodes> {
    val sccs = mutableListOf<Nodes>()
    var index = 0
    val s = Stack<Node>()

    fun strongConnect(v: Node) {
        // Set the depth index for v to the smallest unused index
        v.index = index
        v.lowLink = index
        index++
        s.push(v)
        v.onStack = true

        // consider successors of v
        for (w in g.es[v]!!) {
            if (w.index < 0) {
                // Successor w has not yet been visited; recurse on it
                strongConnect(w)
                v.lowLink = minOf(v.lowLink, w.lowLink)
            }
            else if (w.onStack) {
                // Successor w is in stack s and hence in the current SCC
                v.lowLink = minOf(v.lowLink, w.index)
            }
        }

        // If v is a root node, pop the stack and generate an SCC
        if (v.lowLink == v.index) {
            val scc = mutableListOf<Node>()
            do {
                val w = s.pop()
                w.onStack = false
                scc.add(w)
            }
            while (w != v)
            sccs.add(scc)
        }
    }

    for (v in g.vs) if (v.index < 0) strongConnect(v)
    return sccs
}

fun main(args: Array<String>) {
    val vs = (0..7).map { Node(it) }
    val es = mapOf(
        vs[0] to listOf(vs[1]),
        vs[2] to listOf(vs[0]),
        vs[5] to listOf(vs[2], vs[6]),
        vs[6] to listOf(vs[5]),
        vs[1] to listOf(vs[2]),
        vs[3] to listOf(vs[1], vs[2], vs[4]),
        vs[4] to listOf(vs[5], vs[3]),
        vs[7] to listOf(vs[4], vs[7], vs[6])
    )
    val g = DirectedGraph(vs, es)
    val sccs = tarjan(g)
    println(sccs.joinToString("\n"))
}

{{out}}


[2, 1, 0]
[6, 5]
[4, 3]
[7]

Perl

{{trans|Perl 6}}

use feature 'state';
use List::Util qw(min);

sub tarjan {
    our(%k) = @_;
    our(%onstack, %index, %lowlink, @stack);
    our @connected = ();

    sub strong_connect {
        my($vertex) = @_;
         state $index = 0;
         $index{$vertex}   = $index;
         $lowlink{$vertex} = $index++;
         push @stack, $vertex;
         $onstack{$vertex} = 1;
         for my $connection (@{$k{$vertex}}) {
             if (not $index{$connection}) {
                 strong_connect($connection);
                 $lowlink{$vertex} = min($lowlink{$connection},$lowlink{$vertex});
             } elsif ($onstack{$connection}) {
                 $lowlink{$vertex} = min($lowlink{$connection},$lowlink{$vertex});
             }
        }
        if ($lowlink{$vertex} eq $index{$vertex}) {
            my @node;
            do {
                push @node, pop @stack;
                $onstack{$node[-1]} = 0;
            } while $node[-1] ne $vertex;
            push @connected, [@node];
        }
    }

    for (sort keys %k) {
        strong_connect($_) unless $index{$_}
    }
    @connected
}

my %test1 = (
  0 => [1],
  1 => [2],
  2 => [0],
  3 => [1, 2, 4],
  4 => [3, 5],
  5 => [2, 6],
  6 => [5],
  7 => [4, 6, 7]
);

my %test2 = (
  'Andy' => ['Bart'],
  'Bart' => ['Carl'],
  'Carl' => ['Andy'],
  'Dave' => [qw<Bart Carl Earl>],
  'Earl' => [qw<Dave Fred>],
  'Fred' => [qw<Carl Gary>],
  'Gary' => ['Fred'],
  'Hank' => [qw<Earl Gary Hank>]
);

print "Strongly connected components:\n";
print join(', ', sort @$_) . "\n" for tarjan(%test1);
print "\nStrongly connected components:\n";
print join(', ', sort @$_) . "\n" for tarjan(%test2);

{{out}}

Strongly connected components:
0, 1, 2
5, 6
3, 4
7

Strongly connected components:
Andy, Bart, Carl
Fred, Gary
Dave, Earl
Hank

Perl 6

{{works with|Rakudo|2018.09}}

sub tarjan (%k) {
    my %onstack;
    my %index;
    my %lowlink;
    my @stack;
    my @connected;

    sub strong-connect ($vertex) {
         state $index      = 0;
         %index{$vertex}   = $index;
         %lowlink{$vertex} = $index++;
         %onstack{$vertex} = True;
         @stack.push: $vertex;
         for |%k{$vertex} -> $connection {
             if not %index{$connection}.defined {
                 strong-connect($connection);
                 %lowlink{$vertex} min= %lowlink{$connection};
             }
             elsif %onstack{$connection} {
                 %lowlink{$vertex} min= %index{$connection};
             }
        }
        if %lowlink{$vertex} eq %index{$vertex} {
            my @node;
            repeat {
                @node.push: @stack.pop;
                %onstack{@node.tail} = False;
            } while @node.tail ne $vertex;
            @connected.push: @node;
        }
    }

    .&strong-connect unless %index{$_} for %k.keys;

    @connected
}

# TESTING

-> $test { say "\nStrongly connected components: ", |tarjan($test).sort».sort } for

# hash of vertex, edge list pairs
(((1),(2),(0),(1,2,4),(3,5),(2,6),(5),(4,6,7)).pairs.hash),

# Same layout test data with named vertices instead of numbered.
%(:Andy<Bart>,
  :Bart<Carl>,
  :Carl<Andy>,
  :Dave<Bart Carl Earl>,
  :Earl<Dave Fred>,
  :Fred<Carl Gary>,
  :Gary<Fred>,
  :Hank<Earl Gary Hank>
)

{{out}}


Strongly connected components: (0 1 2)(3 4)(5 6)(7)

Strongly connected components: (Andy Bart Carl)(Dave Earl)(Fred Gary)(Hank)

Phix

{{trans|Go}} Same data as other examples, but with 1-based indexes.

constant g = {{2}, {3}, {1}, {2,3,5}, {6,4}, {3,7}, {6}, {5,8,7}}

sequence index, lowlink, stacked, stack
integer x

function strong_connect(integer n, r_emit)
    index[n] = x
    lowlink[n] = x
    stacked[n] = 1
    stack &= n
    x += 1
    for b=1 to length(g[n]) do
        integer nb = g[n][b]
        if index[nb] == 0 then
            if not strong_connect(nb,r_emit) then
                return false
            end if
            if lowlink[nb] < lowlink[n] then
                lowlink[n] = lowlink[nb]
            end if
        elsif stacked[nb] == 1 then
            if index[nb] < lowlink[n] then
                lowlink[n] = index[nb]
            end if
        end if
    end for
    if lowlink[n] == index[n] then
        sequence c = {}
        while true do
            integer w := stack[$]
            stack = stack[1..$-1]
            stacked[w] = 0
            c = prepend(c, w)
            if w == n then
                call_proc(r_emit,{c})
                exit
            end if
        end while
    end if
    return true
end function

procedure tarjan(sequence g, integer r_emit)
    index   = repeat(0,length(g))
    lowlink = repeat(0,length(g))
    stacked = repeat(0,length(g))
    stack = {}
    x := 1
    for n=1 to length(g) do
        if index[n] == 0
        and not strong_connect(n,r_emit) then
            return
        end if
    end for
end procedure

procedure emit(object c)
-- called for each component identified.
-- each component is a list of nodes.
    ?c
end procedure

tarjan(g,routine_id("emit"))

{{out}}


{1,2,3}
{6,7}
{4,5}
{8}

Racket

Manual implementation

{{trans|Kotlin}}

#lang racket

(require syntax/parse/define
         fancy-app
         (for-syntax racket/syntax))

(struct node (name index low-link on?) #:transparent #:mutable
  #:methods gen:custom-write
  [(define (write-proc v port mode) (fprintf port "~a" (node-name v)))])

(define-syntax-parser change!
  [(_ x:id f) #'(set! x (f x))]
  [(_ accessor:id v f)
   #:with mutator! (format-id this-syntax "set-~a!" #'accessor)
   #'(mutator! v (f (accessor v)))])

(define (tarjan g)
  (define sccs '())
  (define index 0)
  (define s '())

  (define (dfs v)
    (set-node-index! v index)
    (set-node-low-link! v index)
    (set-node-on?! v #t)
    (change! s (cons v _))
    (change! index add1)

    (for ([w (in-list (hash-ref g v '()))])
      (match-define (node _ index low-link on?) w)
      (cond
        [(not index) (dfs w)
                     (change! node-low-link v (min (node-low-link w) _))]
        [on? (change! node-low-link v (min index _))]))

    (when (= (node-low-link v) (node-index v))
      (define-values (scc* s*) (splitf-at s (λ (w) (not (eq? w v)))))
      (set! s (rest s*))
      (define scc (cons (first s*) scc*))
      (for ([w (in-list scc)]) (set-node-on?! w #f))
      (change! sccs (cons scc _))))

  (for* ([(u _) (in-hash g)] #:when (not (node-index u))) (dfs u))
  sccs)

(define (make-graph xs)
  (define store (make-hash))
  (define (make-node v) (hash-ref! store v (thunk (node v #f #f #f))))

  ;; it's important that we use hasheq instead of hash so that we compare
  ;; reference instead of actual value. Had we use the actual value,
  ;; the key would be a mutable value, which causes undefined behavior
  (for/hasheq ([vs (in-list xs)]) (values (make-node (first vs)) (map make-node (rest vs)))))

(tarjan (make-graph '([0 1]
                      [2 0]
                      [5 2 6]
                      [6 5]
                      [1 2]
                      [3 1 2 4]
                      [4 5 3]
                      [7 4 7 6])))

{{out}}


'((7) (3 4) (5 6) (2 1 0))

With the graph library

#lang racket

(require graph)

(define g (unweighted-graph/adj '([0 1]
                                  [2 0]
                                  [5 2 6]
                                  [6 5]
                                  [1 2]
                                  [3 1 2 4]
                                  [4 5 3]
                                  [7 4 7 6])))

(scc g)

{{out}}


'((7) (3 4) (5 6) (1 0 2))

Sidef

{{trans|Perl 6}}

func tarjan (k) {

    var(:onstack, :index, :lowlink, *stack, *connected)

    func strong_connect (vertex, i=0) {

         index{vertex}   = i
         lowlink{vertex} = i+1
         onstack{vertex} = true
         stack << vertex

         for connection in (k{vertex}) {
             if (index{connection} == nil) {
                 strong_connect(connection, i+1)
                 lowlink{vertex} `min!` lowlink{connection}
             }
             elsif (onstack{connection}) {
                 lowlink{vertex} `min!` index{connection}
             }
        }

        if (lowlink{vertex} == index{vertex}) {
            var *node
            do {
                node << stack.pop
                onstack{node.tail} = false
            } while (node.tail != vertex)
            connected << node
        }
    }

    { strong_connect(_) if !index{_} } << k.keys

    return connected
}

var tests = [
    Hash(
         0 => <1>,
         1 => <2>,
         2 => <0>,
         3 => <1 2 4>,
         4 => <3 5>,
         5 => <2 6>,
         6 => <5>,
         7 => <4 6 7>,
    ),
    Hash(
        :Andy => <Bart>,
        :Bart => <Carl>,
        :Carl => <Andy>,
        :Dave => <Bart Carl Earl>,
        :Earl => <Dave Fred>,
        :Fred => <Carl Gary>,
        :Gary => <Fred>,
        :Hank => <Earl Gary Hank>,
    )
]

tests.each {|t|
    say ("Strongly connected components: ", tarjan(t).map{.sort}.sort)
}

{{out}}


Strongly connected components: [["0", "1", "2"], ["3", "4"], ["5", "6"], ["7"]]
Strongly connected components: [["Andy", "Bart", "Carl"], ["Dave", "Earl"], ["Fred", "Gary"], ["Hank"]]

zkl

class Tarjan{
   // input: graph G = (V, Es)
   // output: set of strongly connected components (sets of vertices)
   // Ick: class holds global state for strongConnect(), otherwise inert
   const INDEX=0, LOW_LINK=1, ON_STACK=2;
   fcn init(graph){
      var index=0, stack=List(), components=List(),
          G=List.createLong(graph.len(),0);

      // convert graph to ( (index,lowlink,onStack),(id,links)), ...)
      // sorted by id
      foreach v in (graph){ G[v[0]]=T( L(Void,Void,False),v) }

      foreach v in (G){ if(v[0][INDEX]==Void) strongConnect(v) }

      println("List of strongly connected components:");
      foreach c in (components){ println(c.reverse().concat(",")) }

      returnClass(components);	// over-ride return of class instance
   }
   fcn strongConnect(v){  // v is ( (index,lowlink,onStack), (id,links) )
      // Set the depth index for v to the smallest unused index
      v0:=v[0]; v0[INDEX]=v0[LOW_LINK]=index;
      index+=1;
      v0[ON_STACK]=True;
      stack.push(v);

       // Consider successors of v
      foreach idx in (v[1][1,*]){  // links of v to other vs
         w,w0 := G[idx],w[0];	// well, that is pretty vile
	 if(w[0][INDEX]==Void){
	    strongConnect(w); // Successor w not yet visited; recurse on it
	    v0[LOW_LINK]=v0[LOW_LINK].min(w0[LOW_LINK]);
	 }
	 else if(w0[ON_STACK])
	    // Successor w is in stack S and hence in the current SCC
	    v0[LOW_LINK]=v0[LOW_LINK].min(w0[INDEX]);
      }
      // If v is a root node, pop the stack and generate an SCC
      if(v0[LOW_LINK]==v0[INDEX]){
         strong:=List();  // start a new strongly connected component
	 do{
	    w,w0 := stack.pop(), w[0];
	    w0[ON_STACK]=False;
	    strong.append(w[1][0]); // add w to strongly connected component
	 }while(w.id!=v.id);
	 components.append(strong); // output strongly connected component
      }
   }
}
   // graph from https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
   // with vertices id zero based (vs 1 based in article)
   // ids start at zero and are consecutive (no holes), graph is unsorted
graph:=	  // ( (id, links/Edges), ...)
   T( T(0,1), T(2,0),     T(5,2,6), T(6,5),
      T(1,2), T(3,1,2,4), T(4,5,3), T(7,4,7,6) );
Tarjan(graph);

{{out}}


0,1,2
5,6
3,4
7