⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

{{task|Probability and statistics}}

;Task: Write a function to verify that a given distribution of values is uniform by using the [[wp:Pearson's chi-square test|\chi^2 test]] to see if the distribution has a likelihood of happening of at least the significance level (conventionally 5%). The function should return a boolean that is true if the distribution is one that a uniform distribution (with appropriate number of degrees of freedom) may be expected to produce.

;Reference: :* an entry at the MathWorld website: [http://mathworld.wolfram.com/Chi-SquaredDistribution.html chi-squared distribution].

Ada

First, we specify a simple package to compute the Chi-Square Distance from the uniform distribution:

package Chi_Square is

   type Flt is digits 18;
   type Bins_Type is array(Positive range <>) of Natural;

   function Distance(Bins: Bins_Type) return Flt;

end Chi_Square;

Next, we implement that package:

package body Chi_Square is

   function Distance(Bins: Bins_Type) return Flt is
      Bad_Bins: Natural := 0;
      Sum: Natural := 0;
      Expected: Flt;
      Result: Flt;
   begin
      for I in Bins'Range loop
         if Bins(I) < 5 then
            Bad_Bins := Bad_Bins + 1;
         end if;
         Sum := Sum + Bins(I);
      end loop;
      if 5*Bad_Bins > Bins'Length then
         raise Program_Error with "too many (almost) empty bins";
      end if;

      Expected := Flt(Sum) / Flt(Bins'Length);
      Result := 0.0;
      for I in Bins'Range loop
         Result := Result + ((Flt(Bins(I)) - Expected)**2) / Expected;
      end loop;
      return Result;
   end Distance;

end Chi_Square;

Finally, we actually implement the Chi-square test. We do not actually compute the Chi-square probability; rather we hardcode a table of values for 5% significance level, which has been picked from Wikipedia [http://en.wikipedia.org/wiki/Chi-squared_distribution]:

with Ada.Text_IO, Ada.Command_Line, Chi_Square; use Ada.Text_IO;

procedure Test_Chi_Square is

   package Ch2 renames Chi_Square; use Ch2;
   package FIO is new Float_IO(Flt);

   B: Bins_Type(1 .. Ada.Command_Line.Argument_Count);
   Bound_For_5_Per_Cent: constant array(Positive range <>) of Flt :=
     ( 1 => 3.84,   2 =>  5.99,  3 =>  7.82,  4 => 9.49,   5 =>  11.07,
       6 => 12.59,  7 => 14.07,  8 => 15.51,  9 => 16.92, 10 =>  18.31);
     -- picked from http://en.wikipedia.org/wiki/Chi-squared_distribution

   Dist: Flt;

begin
   for I in B'Range loop
      B(I) := Natural'Value(Ada.Command_Line.Argument(I));
   end loop;
   Dist := Distance(B);
   Put("Degrees of Freedom:" & Integer'Image(B'Length-1) & ", Distance: ");
   FIO.Put(Dist, Fore => 6, Aft => 2, Exp => 0);
   if Dist <= Bound_For_5_Per_Cent(B'Length-1) then
      Put_Line("; (apparently uniform)");
   else
      Put_Line("; (deviates significantly from uniform)");
   end if;
end;

{{out}}

$ ./Test_Chi_Square 199809 200665 199607 200270 199649
Degrees of Freedom: 4, Distance:      4.15; (apparently uniform)
$ ./Test_Chi_Square 522573 244456 139979 71531 21461
Degrees of Freedom: 4, Distance: 790063.28; (deviates significantly from uniform)

C

This first sections contains the functions required to compute the Chi-Squared probability. These are not needed if a library containing the necessary function is availabile (e.g. see [[Numerical Integration]], [[Gamma function]]).

#include <iostream>
#include <stdio.h>
#include <math.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

typedef double (* Ifctn)( double t);
/* Numerical integration method */
double Simpson3_8( Ifctn f, double a, double b, int N)
{
    int j;
    double l1;
    double h = (b-a)/N;
    double h1 = h/3.0;
    double sum = f(a) + f(b);

    for (j=3*N-1; j>0; j--) {
        l1 = (j%3)? 3.0 : 2.0;
        sum += l1*f(a+h1*j) ;
    }
    return h*sum/8.0;
}

#define A 12
double Gamma_Spouge( double z )
{
    int k;
    static double cspace[A];
    static double *coefs = NULL;
    double accum;
    double a = A;

    if (!coefs) {
        double k1_factrl = 1.0;
        coefs = cspace;
        coefs[0] = sqrt(2.0*M_PI);
        for(k=1; k<A; k++) {
            coefs[k] = exp(a-k) * pow(a-k,k-0.5) / k1_factrl;
            k1_factrl *= -k;
        }
    }

    accum = coefs[0];
    for (k=1; k<A; k++) {
        accum += coefs[k]/(z+k);
    }
    accum *= exp(-(z+a)) * pow(z+a, z+0.5);
    return accum/z;
}

double aa1;
double f0( double t)
{
    return  pow(t, aa1)*exp(-t);
}

double GammaIncomplete_Q( double a, double x)
{
    double y, h = 1.5e-2;  /* approximate integration step size */

    /* this cuts off the tail of the integration to speed things up */
    y = aa1 = a-1;
    while((f0(y) * (x-y) > 2.0e-8) && (y < x))   y += .4;
    if (y>x) y=x;

    return 1.0 - Simpson3_8( &f0, 0, y, (int)(y/h))/Gamma_Spouge(a);
}

This section contains the functions specific to the task.

double chi2UniformDistance( double *ds, int dslen)
{
    double expected = 0.0;
    double sum = 0.0;
    int k;

    for (k=0; k<dslen; k++)
        expected += ds[k];
    expected /= k;

    for (k=0; k<dslen; k++) {
        double x = ds[k] - expected;
        sum += x*x;
    }
    return sum/expected;
}

double chi2Probability( int dof, double distance)
{
    return GammaIncomplete_Q( 0.5*dof, 0.5*distance);
}

int chiIsUniform( double *dset, int dslen, double significance)
{
    int dof = dslen -1;
    double dist = chi2UniformDistance( dset, dslen);
    return chi2Probability( dof, dist ) > significance;
}

Testing

int main(int argc, char **argv)
{
    double dset1[] = { 199809., 200665., 199607., 200270., 199649. };
    double dset2[] = { 522573., 244456., 139979.,  71531.,  21461. };
    double *dsets[] = { dset1, dset2 };
    int     dslens[] = { 5, 5 };
    int k, l;
    double  dist, prob;
    int dof;

    for (k=0; k<2; k++) {
        printf("Dataset: [ ");
        for(l=0;l<dslens[k]; l++)
            printf("%.0f, ", dsets[k][l]);

        printf("]\n");
        dist = chi2UniformDistance(dsets[k], dslens[k]);
        dof = dslens[k]-1;
        printf("dof: %d  distance: %.4f", dof, dist);
        prob = chi2Probability( dof, dist );
        printf(" probability: %.6f", prob);
        printf(" uniform? %s\n", chiIsUniform(dsets[k], dslens[k], 0.05)? "Yes":"No");
    }
    return 0;
}

D

import std.stdio, std.algorithm, std.mathspecial;

real x2Dist(T)(in T[] data) pure nothrow @safe @nogc {
    immutable avg = data.sum / data.length;
    immutable sqs = reduce!((a, b) => a + (b - avg) ^^ 2)(0.0L, data);
    return sqs / avg;
}

real x2Prob(in real dof, in real distance) pure nothrow @safe @nogc {
    return gammaIncompleteCompl(dof / 2, distance / 2);
}

bool x2IsUniform(T)(in T[] data, in real significance=0.05L)
pure nothrow @safe @nogc {
    return x2Prob(data.length - 1.0L, x2Dist(data)) > significance;
}

void main() {
    immutable dataSets = [[199809, 200665, 199607, 200270, 199649],
                          [522573, 244456, 139979,  71531,  21461]];
    writefln(" %4s %12s  %12s %8s   %s",
             "dof", "distance", "probability", "Uniform?", "dataset");
    foreach (immutable ds; dataSets) {
        immutable dof = ds.length - 1;
        immutable dist = ds.x2Dist;
        immutable prob = x2Prob(dof, dist);
        writefln("%4d %12.3f  %12.8f    %5s    %6s",
                 dof, dist, prob, ds.x2IsUniform ? "YES" : "NO", ds);
    }
}

{{out}}

  dof     distance   probability Uniform?   dataset
   4        4.146    0.38657083      YES    [199809, 200665, 199607, 200270, 199649]
   4   790063.276    0.00000000       NO    [522573, 244456, 139979,  71531,  21461]

Elixir

{{trans|Ruby}}

defmodule Verify do
  defp gammaInc_Q(a, x) do
    a1 = a-1
    f0  = fn t -> :math.pow(t, a1) * :math.exp(-t) end
    df0 = fn t -> (a1-t) * :math.pow(t, a-2) * :math.exp(-t) end
    y = while_loop(f0, x, a1)
    n = trunc(y / 3.0e-4)
    h = y / n
    hh = 0.5 * h
    sum = Enum.reduce(n-1 .. 0, 0, fn j,sum ->
      t = h * j
      sum + f0.(t) + hh * df0.(t)
    end)
    h * sum / gamma_spounge(a, make_coef)
  end

  defp while_loop(f, x, y) do
    if f.(y)*(x-y) > 2.0e-8 and y < x, do: while_loop(f, x, y+0.3), else: min(x, y)
  end

  @a  12
  defp make_coef do
    coef0 = [:math.sqrt(2.0 * :math.pi)]
    {_, coef} = Enum.reduce(1..@a-1, {1.0, coef0}, fn k,{k1_factrl,c} ->
      h = :math.exp(@a-k) * :math.pow(@a-k, k-0.5) / k1_factrl
      {-k1_factrl*k, [h | c]}
    end)
    Enum.reverse(coef) |> List.to_tuple
  end

  defp gamma_spounge(z, coef) do
    accm = Enum.reduce(1..@a-1, elem(coef,0), fn k,res -> res + elem(coef,k) / (z+k) end)
    accm * :math.exp(-(z+@a)) * :math.pow(z+@a, z+0.5) / z
  end

  def chi2UniformDistance(dataSet) do
    expected = Enum.sum(dataSet) / length(dataSet)
    Enum.reduce(dataSet, 0, fn d,sum -> sum + (d-expected)*(d-expected) end) / expected
  end

  def chi2Probability(dof, distance) do
    1.0 - gammaInc_Q(0.5*dof, 0.5*distance)
  end

  def chi2IsUniform(dataSet, significance\\0.05) do
    dof = length(dataSet) - 1
    dist = chi2UniformDistance(dataSet)
    chi2Probability(dof, dist) > significance
  end
end

dsets = [ [ 199809, 200665, 199607, 200270, 199649 ],
          [ 522573, 244456, 139979,  71531,  21461 ] ]

Enum.each(dsets, fn ds ->
  IO.puts "Data set:#{inspect ds}"
  dof = length(ds) - 1
  IO.puts "  degrees of freedom: #{dof}"
  distance = Verify.chi2UniformDistance(ds)
  :io.fwrite "  distance:           ~.4f~n", [distance]
  :io.fwrite "  probability:        ~.4f~n", [Verify.chi2Probability(dof, distance)]
  :io.fwrite "  uniform?            ~s~n", [(if Verify.chi2IsUniform(ds), do: "Yes", else: "No")]
end)

{{out}}


Data set:[199809, 200665, 199607, 200270, 199649]
  degrees of freedom: 4
  distance:           4.1463
  probability:        0.3866
  uniform?            Yes
Data set:[522573, 244456, 139979, 71531, 21461]
  degrees of freedom: 4
  distance:           790063.2759
  probability:        -0.0000
  uniform?            No

Fortran

{{works with|Fortran|95}}

{{libheader|GNU Scientific Library}}

Instead of implementing the incomplete gamma function by ourselves, we bind to GNU Scientific Library; so we need a module to interface to the function we need (gsl_sf_gamma_inc)

module GSLMiniBind
  implicit none

  interface
     real(c_double) function gsl_sf_gamma_inc(a, x) bind(C)
       use iso_c_binding
       real(c_double), value, intent(in) :: a, x
     end function gsl_sf_gamma_inc
  end interface
end module GSLMiniBind

Now we're ready to complete the task.

program ChiTest
  use GSLMiniBind
  use iso_c_binding
  implicit none

  real, dimension(5) :: dset1 = (/ 199809., 200665., 199607., 200270., 199649. /)
  real, dimension(5) :: dset2 = (/ 522573., 244456., 139979.,  71531.,  21461. /)

  real :: dist, prob
  integer :: dof

  print *, "Dataset 1:"
  print *, dset1
  dist = chi2UniformDistance(dset1)
  dof = size(dset1) - 1
  write(*, '(A,I4,A,F12.4)') 'dof: ', dof, '   distance: ', dist
  prob = chi2Probability(dof, dist)
  write(*, '(A,F9.6)') 'probability: ', prob
  write(*, '(A,L)') 'uniform? ', chiIsUniform(dset1, 0.05)

  ! Lazy copy/past :|
  print *, "Dataset 2:"
  print *, dset2
  dist = chi2UniformDistance(dset2)
  dof = size(dset2) - 1
  write(*, '(A,I4,A,F12.4)') 'dof: ', dof, '   distance: ', dist
  prob = chi2Probability(dof, dist)
  write(*, '(A,F9.6)') 'probability: ', prob
  write(*, '(A,L)') 'uniform? ', chiIsUniform(dset2, 0.05)

contains

function chi2Probability(dof, distance)
  real :: chi2Probability
  integer, intent(in) :: dof
  real, intent(in) :: distance

  ! in order to make this work, we need linking with GSL library
  chi2Probability = gsl_sf_gamma_inc(real(0.5*dof, c_double), real(0.5*distance, c_double))
end function chi2Probability

function chiIsUniform(dset, significance)
  logical :: chiIsUniform
  real, dimension(:), intent(in) :: dset
  real, intent(in) :: significance

  integer :: dof
  real :: dist

  dof = size(dset) - 1
  dist = chi2UniformDistance(dset)
  chiIsUniform = chi2Probability(dof, dist) > significance
end function chiIsUniform

function chi2UniformDistance(ds)
  real :: chi2UniformDistance
  real, dimension(:), intent(in) :: ds

  real :: expected, summa = 0.0

  expected = sum(ds) / size(ds)
  summa = sum( (ds - expected) ** 2 )

  chi2UniformDistance = summa / expected
end function chi2UniformDistance

end program ChiTest

Go

{{trans|C}} Go has a nice gamma function in the library. Otherwise, it's mostly a port from C. Note, this implementation of the incomplete gamma function works for these two test cases, but, I believe, has serious limitations. See talk page.

package main

import (
    "fmt"
    "math"
)

type ifctn func(float64) float64

func simpson38(f ifctn, a, b float64, n int) float64 {
    h := (b - a) / float64(n)
    h1 := h / 3
    sum := f(a) + f(b)
    for j := 3*n - 1; j > 0; j-- {
        if j%3 == 0 {
            sum += 2 * f(a+h1*float64(j))
        } else {
            sum += 3 * f(a+h1*float64(j))
        }
    }
    return h * sum / 8
}

func gammaIncQ(a, x float64) float64 {
    aa1 := a - 1
    var f ifctn = func(t float64) float64 {
        return math.Pow(t, aa1) * math.Exp(-t)
    }
    y := aa1
    h := 1.5e-2
    for f(y)*(x-y) > 2e-8 && y < x {
        y += .4
    }
    if y > x {
        y = x
    }
    return 1 - simpson38(f, 0, y, int(y/h/math.Gamma(a)))
}

func chi2ud(ds []int) float64 {
    var sum, expected float64
    for _, d := range ds {
        expected += float64(d)
    }
    expected /= float64(len(ds))
    for _, d := range ds {
        x := float64(d) - expected
        sum += x * x
    }
    return sum / expected
}

func chi2p(dof int, distance float64) float64 {
    return gammaIncQ(.5*float64(dof), .5*distance)
}

const sigLevel = .05

func main() {
    for _, dset := range [][]int{
        {199809, 200665, 199607, 200270, 199649},
        {522573, 244456, 139979, 71531, 21461},
    } {
        utest(dset)
    }
}

func utest(dset []int) {
    fmt.Println("Uniform distribution test")
    var sum int
    for _, c := range dset {
        sum += c
    }
    fmt.Println(" dataset:", dset)
    fmt.Println(" samples:                      ", sum)
    fmt.Println(" categories:                   ", len(dset))

    dof := len(dset) - 1
    fmt.Println(" degrees of freedom:           ", dof)

    dist := chi2ud(dset)
    fmt.Println(" chi square test statistic:    ", dist)

    p := chi2p(dof, dist)
    fmt.Println(" p-value of test statistic:    ", p)

    sig := p < sigLevel
    fmt.Printf(" significant at %2.0f%% level?      %t\n", sigLevel*100, sig)
    fmt.Println(" uniform?                      ", !sig, "\n")
}

Output:


Uniform distribution test
 dataset: [199809 200665 199607 200270 199649]
 samples:                       1000000
 categories:                    5
 degrees of freedom:            4
 chi square test statistic:     4.14628
 p-value of test statistic:     0.3865708330827673
 significant at  5% level?      false
 uniform?                       true

Uniform distribution test
 dataset: [522573 244456 139979 71531 21461]
 samples:                       1000000
 categories:                    5
 degrees of freedom:            4
 chi square test statistic:     790063.27594
 p-value of test statistic:     2.3528290427066167e-11
 significant at  5% level?      true
 uniform?                       false

Hy

(import
  [scipy.stats [chisquare]]
  [collections [Counter]])

(defn uniform? [f repeats &optional [alpha .05]]
  "Call 'f' 'repeats' times and do a chi-squared test for uniformity
  of the resulting discrete distribution. Return false iff the
  null hypothesis of uniformity is rejected for the test with
  size 'alpha'."
  (<= alpha (second (chisquare
    (.values (Counter (take repeats (repeatedly f))))))))

Examples of use:

(import [random [randint]])

(for [f [
    (fn [] (randint 1 10))
    (fn [] (if (randint 0 1) (randint 1 9) (randint 1 10)))]]
  (print (uniform? f 5000)))

J

'''Solution (Tacit):'''

require 'stats/base'

countCats=: #@~.                    NB. counts the number of unique items
getExpected=: #@] % [               NB. divides no of items by category count
getObserved=: #/.~@]                NB. counts frequency for each category
calcX2=: [: +/ *:@(getObserved - getExpected) % getExpected   NB. calculates test statistic
calcDf=: <:@[                       NB. calculates degrees of freedom for uniform distribution

NB.*isUniform v Tests (5%) whether y is uniformly distributed
NB. result is: boolean describing if distribution y is uniform
NB. y is: distribution to test
NB. x is: optionally specify number of categories possible
isUniform=: (countCats $: ]) : (0.95 > calcDf chisqcdf :: 1: calcX2)

'''Solution (Explicit):'''

require 'stats/base'

NB.*isUniformX v Tests (5%) whether y is uniformly distributed
NB. result is: boolean describing if distribution y is uniform
NB. y is: distribution to test
NB. x is: optionally specify number of categories possible
isUniformX=: verb define
  (#~. y) isUniformX y
:
  signif=. 0.95                    NB. set significance level
  expected=. (#y) % x              NB. number of items divided by the category count
  observed=. #/.~ y                NB. frequency count for each category
  X2=. +/ (*: observed - expected) % expected  NB. the test statistic
  degfreedom=. <: x                NB. degrees of freedom
  signif > degfreedom chisqcdf :: 1: X2
)

'''Example Usage:'''

   FairDistrib=:      1e6 ?@$ 5
   UnfairDistrib=: (9.5e5 ?@$ 5) , (5e4 ?@$ 4)
   isUniformX FairDistrib
1
   isUniformX UnfairDistrib
0
   isUniform 4 4 4 5 5 5 5 5 5 5     NB. uniform if only 2 categories possible
1
   4 isUniform 4 4 4 5 5 5 5 5 5 5   NB. not uniform if 4 categories possible
0

Java

{{trans|D}} {{works with|Java|8}}

import static java.lang.Math.pow;
import java.util.Arrays;
import static java.util.Arrays.stream;
import org.apache.commons.math3.special.Gamma;

public class Test {

    static double x2Dist(double[] data) {
        double avg = stream(data).sum() / data.length;
        double sqs = stream(data).reduce(0, (a, b) -> a + pow((b - avg), 2));
        return sqs / avg;
    }

    static double x2Prob(double dof, double distance) {
        return Gamma.regularizedGammaQ(dof / 2, distance / 2);
    }

    static boolean x2IsUniform(double[] data, double significance) {
        return x2Prob(data.length - 1.0, x2Dist(data)) > significance;
    }

    public static void main(String[] a) {
        double[][] dataSets = {{199809, 200665, 199607, 200270, 199649},
        {522573, 244456, 139979, 71531, 21461}};

        System.out.printf(" %4s %12s  %12s %8s   %s%n",
                "dof", "distance", "probability", "Uniform?", "dataset");

        for (double[] ds : dataSets) {
            int dof = ds.length - 1;
            double dist = x2Dist(ds);
            double prob = x2Prob(dof, dist);
            System.out.printf("%4d %12.3f  %12.8f    %5s    %6s%n",
                    dof, dist, prob, x2IsUniform(ds, 0.05) ? "YES" : "NO",
                    Arrays.toString(ds));
        }
    }
}
  dof     distance   probability Uniform?   dataset
   4        4,146    0,38657083      YES    [199809.0, 200665.0, 199607.0, 200270.0, 199649.0]
   4   790063,276    0,00000000       NO    [522573.0, 244456.0, 139979.0, 71531.0, 21461.0]

Julia

# v0.6

using Distributions

function eqdist(data::Vector{T}, α::Float64=0.05)::Bool where T <: Real
    if ! (0 α 1); error("α must be in [0, 1]") end
    exp = mean(data)
    chisqval = sum((x - exp) ^ 2 for x in data) / exp
    pval = ccdf(Chisq(2), chisqval)
    return pval > α
end

data1 = [199809, 200665, 199607, 200270, 199649]
data2 = [522573, 244456, 139979,  71531,  21461]

for data in (data1, data2)
    println("Data:\n$data")
    println("Hypothesis test: the original population is ", (eqdist(data) ? "" : "not "), "uniform.\n")
end

{{out}}

Data:
[199809, 200665, 199607, 200270, 199649]
Hypothesis test: the original population is uniform.

Data:
[522573, 244456, 139979, 71531, 21461]
Hypothesis test: the original population is not uniform.

Kotlin

This program reuses Kotlin code from the [[Gamma function]] and [[Numerical Integration]] tasks but otherwise is a translation of the C entry for this task.

// version 1.1.51

typealias Func = (Double) -> Double

fun gammaLanczos(x: Double): Double {
    var xx = x
    val p = doubleArrayOf(
        0.99999999999980993,
      676.5203681218851,
    -1259.1392167224028,
      771.32342877765313,
     -176.61502916214059,
       12.507343278686905,
       -0.13857109526572012,
        9.9843695780195716e-6,
        1.5056327351493116e-7
    )
    val g = 7
    if (xx < 0.5) return Math.PI / (Math.sin(Math.PI * xx) * gammaLanczos(1.0 - xx))
    xx--
    var a = p[0]
    val t = xx + g + 0.5
    for (i in 1 until p.size) a += p[i] / (xx + i)
    return Math.sqrt(2.0 * Math.PI) * Math.pow(t, xx + 0.5) * Math.exp(-t) * a
}

fun integrate(a: Double, b: Double, n: Int, f: Func): Double {
    val h = (b - a) / n
    var sum = 0.0
    for (i in 0 until n) {
        val x = a + i * h
        sum += (f(x) + 4.0 * f(x + h / 2.0) + f(x + h)) / 6.0
    }
    return sum * h
}

fun gammaIncompleteQ(a: Double, x: Double): Double {
    val aa1 = a - 1.0
    fun f0(t: Double) = Math.pow(t, aa1) * Math.exp(-t)
    val h = 1.5e-2
    var y = aa1
    while ((f0(y) * (x - y) > 2.0e-8) && y < x) y += 0.4
    if (y > x) y = x
    return 1.0 - integrate(0.0, y, (y / h).toInt(), ::f0) / gammaLanczos(a)
}

fun chi2UniformDistance(ds: DoubleArray): Double {
    val expected = ds.average()
    val sum = ds.map { val x = it - expected; x * x }.sum()
    return sum / expected
}

fun chi2Probability(dof: Int, distance: Double) =
    gammaIncompleteQ(0.5 * dof, 0.5 * distance)

fun chiIsUniform(ds: DoubleArray, significance: Double):Boolean {
    val dof = ds.size - 1
    val dist = chi2UniformDistance(ds)
    return chi2Probability(dof, dist) > significance
}

fun main(args: Array<String>) {
    val dsets = listOf(
        doubleArrayOf(199809.0, 200665.0, 199607.0, 200270.0, 199649.0),
        doubleArrayOf(522573.0, 244456.0, 139979.0,  71531.0,  21461.0)
    )
    for (ds in dsets) {
        println("Dataset: ${ds.asList()}")
        val dist = chi2UniformDistance(ds)
        val dof = ds.size - 1
        print("DOF: $dof  Distance: ${"%.4f".format(dist)}")
        val prob = chi2Probability(dof, dist)
        print("  Probability: ${"%.6f".format(prob)}")
        val uniform = if (chiIsUniform(ds, 0.05)) "Yes" else "No"
        println("  Uniform? $uniform\n")
    }
}

{{out}}


Dataset: [199809.0, 200665.0, 199607.0, 200270.0, 199649.0]
DOF: 4  Distance: 4.1463  Probability: 0.386571  Uniform? Yes

Dataset: [522573.0, 244456.0, 139979.0, 71531.0, 21461.0]
DOF: 4  Distance: 790063.2759  Probability: 0.000000  Uniform? No

Mathematica

This code explicity assumes a discrete uniform distribution since the chi square test is a poor test choice for continuous distributions and requires Mathematica version 2 or later

discreteUniformDistributionQ[data_, {min_Integer, max_Integer}, confLevel_: .05] :=
If[$VersionNumber >= 8,
  confLevel <= PearsonChiSquareTest[data, DiscreteUniformDistribution[{min, max}]],
  Block[{v, k = max - min, n = Length@data},
   v = (k + 1) (Plus @@ (((Length /@ Split[Sort@data]))^2))/n - n;
   GammaRegularized[k/2, 0, v/2] <= 1 - confLevel]]

discreteUniformDistributionQ[data_] :=discreteUniformDistributionQ[data, data[[Ordering[data][[{1, -1}]]]]]

code used to create test data requires Mathematica version 6 or later

uniformData = RandomInteger[10, 100];
nonUniformData = Total@RandomInteger[10, {5, 100}];
{discreteUniformDistributionQ[uniformData],discreteUniformDistributionQ[nonUniformData]}

{{out}}

{True,False}

OCaml

This code needs to be compiled with library [http://oandrieu.nerim.net/ocaml/gsl/ gsl.cma].

let sqr x = x *. x

let chi2UniformDistance distrib =
  let count, len = Array.fold_left (fun (s, c) e -> s + e, succ c)
  				   (0, 0) distrib in
  let expected = float count /. float len in
  let distance = Array.fold_left (fun s e ->
    s +. sqr (float e -. expected) /. expected
  ) 0. distrib in
  let dof = float (pred len) in
  dof, distance

let chi2Proba dof distance =
  Gsl_sf.gamma_inc_Q (0.5 *. dof) (0.5 *. distance)

let chi2IsUniform distrib significance =
  let dof, distance = chi2UniformDistance distrib in
  let likelihoodOfRandom = chi2Proba dof distance in
  likelihoodOfRandom > significance

let _ =
  List.iter (fun distrib ->
    let dof, distance = chi2UniformDistance distrib in
    Printf.printf "distribution ";
    Array.iter (Printf.printf "\t%d") distrib;
    Printf.printf "\tdistance %g" distance;
    Printf.printf "\t[%g > 0.05]" (chi2Proba dof distance);
    if chi2IsUniform distrib 0.05 then Printf.printf " fair\n"
    else Printf.printf " unfair\n"
  )
  [
    [| 199809; 200665; 199607; 200270; 199649 |];
    [| 522573; 244456; 139979; 71531; 21461 |]
  ]

Output


distribution    199809  200665  199607  200270  199649  distance 4.14628        [0.386571 > 0.05] fair
distribution    522573  244456  139979  71531   21461   distance 790063 [0 > 0.05] unfair

PARI/GP

The solution is very easy in GP since PARI includes a good incomplete gamma implementation; the sum function is also useful for clarity. Most of the code is just for displaying results.

The sample data for the test was taken from [[#Go|Go]].

cumChi2(chi2,dof)={
	my(g=gamma(dof/2));
	incgam(dof/2,chi2/2,g)/g
};
test(v,alpha=.05)={
	my(chi2,p,s=sum(i=1,#v,v[i]),ave=s/#v);
	print("chi^2 statistic: ",chi2=sum(i=1,#v,(v[i]-ave)^2)/ave);
	print("p-value: ",p=cumChi2(chi2,#v-1));
	if(p<alpha,
		print("Significant at the alpha = "alpha" level: not uniform");
	,
		print("Not significant at the alpha = "alpha" level: uniform");
	)
};

test([199809, 200665, 199607, 200270, 199649])
test([522573, 244456, 139979, 71531, 21461])

Perl

{{trans|Perl 6}}

use List::Util qw(sum reduce);
use constant pi => 3.14159265;

sub incomplete_G_series {
    my($s, $z) = @_;
    my $n = 10;
    push @numers, $z**$_ for 1..$n;
    my @denoms = $s+1;
    push @denoms, $denoms[-1]*($s+$_) for 2..$n;
    my $M = 1;
    $M += $numers[$_-1]/$denoms[$_-1] for 1..$n;
    $z**$s / $s * exp(-$z) * $M;
}

sub G_of_half {
    my($n) = @_;
    if ($n % 2) { f(2*$_) / (4**$_ * f($_)) * sqrt(pi) for int ($n-1) / 2 }
    else        { f(($n/2)-1) }
}

sub f { reduce { $a * $b } 1, 1 .. $_[0] } # factorial

sub chi_squared_cdf {
    my($k, $x) = @_;
    my $f = $k < 20 ? 20 : 10;
    if ($x == 0)                  { 0.0 }
    elsif ($x < $k + $f*sqrt($k)) { incomplete_G_series($k/2, $x/2) / G_of_half($k) }
    else                          { 1.0 }
}
sub chi_squared_test {
    my(@bins) = @_;
    $significance = 0.05;
    my $n = @bins;
    my $N = sum @bins;
    my $expected = $N / $n;
    my $chi_squared = sum map { ($_ - $expected)**2 / $expected } @bins;
    my $p_value = 1 - chi_squared_cdf($n-1, $chi_squared);
    return $chi_squared, $p_value, $p_value > $significance ? 'True' : 'False';
}

for $dataset ([199809, 200665, 199607, 200270, 199649], [522573, 244456, 139979, 71531, 21461]) {
    printf "C2 = %10.3f, p-value = %.3f, uniform = %s\n", chi_squared_test(@$dataset);
}

{{out}}

C2 =      4.146, p-value = 0.387, uniform = True
C2 = 790063.276, p-value = 0.000, uniform = False

Perl 6

For the incomplete gamma function we use a series expansion related to Kummer's confluent hypergeometric function (see http://en.wikipedia.org/wiki/Incomplete_gamma_function#Evaluation_formulae). The gamma function is calculated in closed form, as we only need its value at integers and half integers.

sub incomplete-γ-series($s, $z) {
    my \numers = $z X** 1..*;
    my \denoms = [\*] $s X+ 1..*;
    my $M = 1 + [+] (numers Z/ denoms) ... * < 1e-6;
    $z**$s / $s * exp(-$z) * $M;
}

sub postfix:<!>(Int $n) { [*] 2..$n }

sub Γ-of-half(Int $n where * > 0) {
    ($n %% 2) ?? (($_-1)!                            given  $n    div 2)
              !! ((2*$_)! / (4**$_ * $_!) * sqrt(pi) given ($n-1) div 2);
}

# degrees of freedom constrained due to numerical limitations
sub chi-squared-cdf(Int $k where 1..200, $x where * >= 0) {
    my $f = $k < 20 ?? 20 !! 10;
    given $x {
        when 0                    { 0.0 }
        when * < $k + $f*sqrt($k) { incomplete-γ-series($k/2, $x/2) / Γ-of-half($k) }
        default                   { 1.0 }
    }
}

sub chi-squared-test(@bins, :$significance = 0.05) {
    my $n = +@bins;
    my $N = [+] @bins;
    my $expected = $N / $n;
    my $chi-squared = [+] @bins.map: { ($^bin - $expected)**2 / $expected }
    my $p-value = 1 - chi-squared-cdf($n-1, $chi-squared);
    return (:$chi-squared, :$p-value, :uniform($p-value > $significance));
}

for [< 199809 200665 199607 200270 199649 >],
    [< 522573 244456 139979  71531  21461 >]
    -> $dataset
{
    my %t = chi-squared-test($dataset);
    say 'data: ', $dataset;
    say "χ² = {%t<chi-squared>}, p-value = {%t<p-value>.fmt('%.4f')}, uniform = {%t<uniform>}";
}

{{out}}

data: 199809 200665 199607 200270 199649
χ² = 4.14628, p-value = 0.3866, uniform = True
data: 522573 244456 139979 71531 21461
χ² = 790063.27594, p-value = 0.0000, uniform = False

Phix

{{trans|Go}} using gamma() from [[Gamma_function#Phix]]

function f(atom aa1, t)
    return power(t, aa1) * exp(-t)
end function

function simpson38(atom aa1, a, b, integer n)
    atom h := (b - a) / n,
         h1 := h / 3,
         tot := f(aa1,a) + f(aa1,b)
    for j=3*n-1 to 1 by -1 do
        tot += (3-(mod(j,3)=0)) * f(aa1,a+h1*j)
    end for
    return h * tot / 8
end function

function gammaIncQ(atom a, x)
    atom aa1 := a - 1,
         y := aa1,
         h := 1.5e-2
    while f(aa1,y)*(x-y) > 2e-8 and y < x do
        y += 0.4
    end while
    if y > x then y = x end if
    return 1 - simpson38(aa1, 0, y, floor(y/h/gamma(a)))
end function

function chi2ud(sequence ds)
    atom expected = sum(ds)/length(ds),
         tot = sum(sq_power(sq_sub(ds,expected),2))
    return tot / expected
end function

function chi2p(integer dof, atom distance)
    return gammaIncQ(0.5*dof, 0.5*distance)
end function

constant sigLevel = 0.05
constant tf = {"true","false"}

procedure utest(sequence dset)
    printf(1,"Uniform distribution test\n")
    integer tot = sum(dset)
    printf(1," dataset:%s\n",{sprint(dset)})
    printf(1," samples:                      %d\n", tot)
    printf(1," categories:                   %d\n", length(dset))

    integer dof := length(dset) - 1
    printf(1," degrees of freedom:           %d\n", dof)

    atom dist := chi2ud(dset)
    printf(1," chi square test statistic:    %g\n", dist)

    atom p := chi2p(dof, dist)
    printf(1," p-value of test statistic:    %g\n", p)

    bool sig := p < sigLevel
    printf(1," significant at %2.0f%% level?     %s\n", {sigLevel*100, tf[2-sig]})
    printf(1," uniform?                      %s\n",{tf[sig+1]})
end procedure

utest({199809, 200665, 199607, 200270, 199649})
utest({522573, 244456, 139979, 71531, 21461})

{{out}}


Uniform distribution test
 dataset:{199809,200665,199607,200270,199649}
 samples:                      1000000
 categories:                   5
 degrees of freedom:           4
 chi square test statistic:    4.14628
 p-value of test statistic:    0.386571
 significant at  5% level?     false
 uniform?                      true
Uniform distribution test
 dataset:{522573,244456,139979,71531,21461}
 samples:                      1000000
 categories:                   5
 degrees of freedom:           4
 chi square test statistic:    790063
 p-value of test statistic:    2.35282e-11
 significant at  5% level?     true
 uniform?                      false

Python

Implements the Chi Square Probability function with an integration. I'm sure there are better ways to do this. Compare to OCaml implementation.

import math
import random

def GammaInc_Q( a, x):
    a1 = a-1
    a2 = a-2
    def f0( t ):
        return t**a1*math.exp(-t)

    def df0(t):
        return (a1-t)*t**a2*math.exp(-t)

    y = a1
    while f0(y)*(x-y) >2.0e-8 and y < x: y += .3
    if y > x: y = x

    h = 3.0e-4
    n = int(y/h)
    h = y/n
    hh = 0.5*h
    gamax = h * sum( f0(t)+hh*df0(t) for t in ( h*j for j in xrange(n-1, -1, -1)))

    return gamax/gamma_spounge(a)

c = None
def gamma_spounge( z):
    global c
    a = 12

    if c is None:
       k1_factrl = 1.0
       c = []
       c.append(math.sqrt(2.0*math.pi))
       for k in range(1,a):
          c.append( math.exp(a-k) * (a-k)**(k-0.5) / k1_factrl )
          k1_factrl *= -k

    accm = c[0]
    for k in range(1,a):
        accm += c[k] / (z+k)
    accm *= math.exp( -(z+a)) * (z+a)**(z+0.5)
    return accm/z;

def chi2UniformDistance( dataSet ):
    expected = sum(dataSet)*1.0/len(dataSet)
    cntrd = (d-expected for d in dataSet)
    return sum(x*x for x in cntrd)/expected

def chi2Probability(dof, distance):
    return 1.0 - GammaInc_Q( 0.5*dof, 0.5*distance)

def chi2IsUniform(dataSet, significance):
    dof = len(dataSet)-1
    dist = chi2UniformDistance(dataSet)
    return chi2Probability( dof, dist ) > significance

dset1 = [ 199809, 200665, 199607, 200270, 199649 ]
dset2 = [ 522573, 244456, 139979,  71531,  21461 ]

for ds in (dset1, dset2):
    print "Data set:", ds
    dof = len(ds)-1
    distance =chi2UniformDistance(ds)
    print "dof: %d distance: %.4f" % (dof, distance),
    prob = chi2Probability( dof, distance)
    print "probability: %.4f"%prob,
    print "uniform? ", "Yes"if chi2IsUniform(ds,0.05) else "No"

Output:

Data set: [199809, 200665, 199607, 200270, 199649]
dof: 4 distance: 4.146280 probability: 0.3866 uniform?  Yes
Data set: [522573, 244456, 139979, 71531, 21461]
dof: 4 distance: 790063.275940 probability: 0.0000 uniform?  No

R

R being a statistical computating language, the chi-squared test is built in with the function "chisq.test"


dset1=c(199809,200665,199607,200270,199649)
dset2=c(522573,244456,139979,71531,21461)

chi2IsUniform<-function(dataset,significance=0.05){
  chi2IsUniform=(chisq.test(dataset)$p.value>significance)
}

for (ds in list(dset1,dset2)){
  print(c("Data set:",ds))
  print(chisq.test(ds))
  print(paste("uniform?",chi2IsUniform(ds)))
}

Output:


[1] "Data set:" "199809"    "200665"    "199607"    "200270"    "199649"

        Chi-squared test for given probabilities

data:  ds
X-squared = 4.1463, df = 4, p-value = 0.3866

[1] "uniform? TRUE"
[1] "Data set:" "522573"    "244456"    "139979"    "71531"     "21461"

        Chi-squared test for given probabilities

data:  ds
X-squared = 790063.3, df = 4, p-value < 2.2e-16

[1] "uniform? FALSE"

Racket


#lang racket
(require
 racket/flonum (planet williams/science:4:5/science)
 (only-in (planet williams/science/unsafe-ops-utils) real->float))

; (chi^2-goodness-of-fit-test observed expected df)
;  Given:   observed, a sequence of observed frequencies
;           expected, a sequence of expected frequencies
;           df,       the degrees of freedom
;  Result:  P-value  = 1-chi^2cdf(X^2,df) , the p-value
(define (chi^2-goodness-of-fit-test observed expected df)
  (define X^2 (for/sum ([o observed] [e expected])
                (/ (sqr (- o e)) e)))
  (- 1.0 (chi-squared-cdf X^2 df)))

(define (is-uniform? rand n α)
  ; Use significance level α to test whether
  ; n small random numbers generated by rand
  ; have a uniform distribution.

  ; Observed values:
  (define o (make-vector 10 0))
  ; generate n random integers from 0 to 9.
  (for ([_ (+ n 1)])
    (define r (rand 10))
    (vector-set! o r (+ (vector-ref o r) 1)))
  ; Expected values:
  (define ex (make-vector 10 (/ n 10)))

  ; Calculate the P-value:
  (define P (chi^2-goodness-of-fit-test o ex (- n 1)))

  ; If the P-value is larger than α we accept the
  ; hypothesis that the numbers are distributed uniformly.
  (> P α))

; Test whether the builtin generator is uniform:
(is-uniform? random 1000 0.05)
; Test whether the constant generator fails:
(is-uniform? (λ(_) 5) 1000 0.05)

Output:


#t
#f

REXX

{{trans|Go}}

Programming notes:

The use of the '''pow''' was elided as it can just be replaced with '''t**(a-1)'''.

The '''gamma''' was replaced with a simple version. The argument for '''gamma''' is (in the cases used herein) always

positive, and is either an integer, or a number which is a multiple of '''1/2''', both of these cases can be calculated with

a straight─forward calculation.

/*REXX program performs a chi─squared test to verify a given distribution is uniform.   */
numeric digits length( pi() )  - length(.)       /*enough decimal digs for calculations.*/
@.=;                                        @.1= 199809 200665 199607 200270 199649
                                            @.2= 522573 244456 139979  71531  21461
        do s=1  while @.s\=='';  call uTest @.s  /*invoke  uTest with a data set of #'s.*/
        end   /*s*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
!:      procedure; parse arg x;  p=1;    do j=2  to x;   p= p*j;   end  /*j*/;    return p
chi2p:  procedure;  parse arg dof, distance;       return gammaI( dof/2,  distance/2 )
f:      parse arg t;   if t=0  then return 0;      return t ** (a-1)    *    exp(-t)
e:      e =2.718281828459045235360287471352662497757247093699959574966967627724; return e
pi:     pi=3.141592653589793238462643383279502884197169399375105820974944592308; return pi
/*──────────────────────────────────────────────────────────────────────────────────────*/
!!:     procedure; parse arg x;                   if x<2  then return 1;    p= x
                     do k=2+x//2  to x-1  by 2;   p= p*k;   end  /*k*/;          return p
/*──────────────────────────────────────────────────────────────────────────────────────*/
chi2ud: procedure: parse arg ds; sum=0;                       expect= 0
                                       do j=1  for words(ds); expect= expect + word(ds, j)
                                       end   /*j*/
        expect = expect / words(ds)
                                       do k=1  for words(ds)
                                       sum= sum   +   (word(ds, k) - expect) **2
                                       end   /*k*/
        return sum / expect
/*──────────────────────────────────────────────────────────────────────────────────────*/
exp:    procedure; parse arg x; ix= x%1;  if abs(x-ix)>.5  then ix= ix + sign(x);  x= x-ix
        z=1; _=1; w=z;    do j=1;  _= _*x/j;  z= (z + _)/1;  if z==w  then leave;      w=z
                          end  /*j*/;         if z\==0  then z= z * e()**ix;      return z
/*──────────────────────────────────────────────────────────────────────────────────────*/
gamma:  procedure; parse arg x; if datatype(x, 'W')  then return !(x-1) /*Int?  Use fact*/
        n= trunc(x)                     /*at this point, X is pos and a multiple of 1/2.*/
        d= !!(n+n - 1)                  /*compute the double factorial of:    2*n - 1.  */
        if n//2  then p= -1             /*if  N  is  odd,   then use a negative unity.  */
                 else p=  1             /*if  N  is even,   then use a positive unity.  */
        if x>0   then return p * d * sqrt(pi()) / (2**n)
                      return p * (2**n) * sqrt(pi()) / d
/*──────────────────────────────────────────────────────────────────────────────────────*/
gammaI: procedure; parse arg a,x;  y= a-1;   do  while f(y)*(x-y) > 2e-8 & y<x;  y= y + .4
                                             end  /*while*/
        y= min(x, y)
        return 1   -   simp38(0, y,   y / 0.015 / gamma(a-1) % 1)
/*──────────────────────────────────────────────────────────────────────────────────────*/
simp38: procedure; parse arg a, b, n;                h= (b-a) / n;        h1= h / 3
        sum= f(a) + f(b)
                             do j=3*n-1   by -1   while j>0
                             if j//3 == 0  then sum= sum   +   2 * f(a + h1*j)
                                           else sum= sum   +   3 * f(a + h1*j)
                             end   /*j*/
        return h * sum / 8
/*──────────────────────────────────────────────────────────────────────────────────────*/
sqrt:   procedure; parse arg x;  if x=0  then return 0; d=digits(); numeric digits; h= d+6
        numeric form; m.=9; parse value format(x,2,1,,0) 'E0' with g "E" _ .;g=g *.5'e'_%2
          do j=0  while h>9;      m.j=h;               h=h%2+1;       end  /*j*/
          do k=j+5  to 0  by -1;  numeric digits m.k;  g=(g+x/g)*.5;  end  /*k*/; return g
/*──────────────────────────────────────────────────────────────────────────────────────*/
uTest:  procedure; parse arg dset;  sum= 0;   pad= left('', 11);      sigLev= 1/20  /*5%*/
        say;   say '     '   center(" Uniform distribution test ", 75, '═')
        #= words(dset);                                              sigPC= sigLev*100/1
                             do j=1  for #;      sum= sum  +  word(dset, j)
                             end   /*j*/
                  say pad "                  dataset: "  dset
                  say pad "                  samples: "  sum
                  say pad "               categories: "  #
                  say pad "       degrees of freedom: "  # - 1
        dist= chi2ud(dset)
        P= chi2p(# - 1,  dist)
        sig = (abs(P) < dist * sigLev)
                  say pad "significant at " sigPC'%  level? '  word('no yes',    sig  + 1)
                  say pad "   is the dataset uniform? "        word('no yes', (\(sig))+ 1)
        return

{{out|output|text= when using the default inputs:}}


      ════════════════════════ Uniform distribution test ════════════════════════
                              dataset:  199809 200665 199607 200270 199649
                              samples:  1000000
                           categories:  5
                   degrees of freedom:  4
            significant at  5%  level?  no
               is the dataset uniform?  yes

      ════════════════════════ Uniform distribution test ════════════════════════
                              dataset:  522573 244456 139979 71531 21461
                              samples:  1000000
                           categories:  5
                   degrees of freedom:  4
            significant at  5%  level?  yes
               is the dataset uniform?  no

Ruby

{{trans|Python}}

def gammaInc_Q(a, x)
  a1, a2 = a-1, a-2
  f0  = lambda {|t| t**a1 * Math.exp(-t)}
  df0 = lambda {|t| (a1-t) * t**a2 * Math.exp(-t)}

  y = a1
  y += 0.3  while f0[y]*(x-y) > 2.0e-8 and y < x
  y = x  if y > x

  h = 3.0e-4
  n = (y/h).to_i
  h = y/n
  hh = 0.5 * h
  sum = 0
  (n-1).step(0, -1) do |j|
    t = h * j
    sum += f0[t] + hh * df0[t]
  end
  h * sum / gamma_spounge(a)
end

A = 12
k1_factrl = 1.0
coef = [Math.sqrt(2.0*Math::PI)]
COEF = (1...A).each_with_object(coef) do |k,c|
  c << Math.exp(A-k) * (A-k)**(k-0.5) / k1_factrl
  k1_factrl *= -k
end

def gamma_spounge(z)
  accm = (1...A).inject(COEF[0]){|res,k| res += COEF[k] / (z+k)}
  accm * Math.exp(-(z+A)) * (z+A)**(z+0.5) / z
end

def chi2UniformDistance(dataSet)
  expected = dataSet.inject(:+).to_f / dataSet.size
  dataSet.map{|d|(d-expected)**2}.inject(:+) / expected
end

def chi2Probability(dof, distance)
  1.0 - gammaInc_Q(0.5*dof, 0.5*distance)
end

def chi2IsUniform(dataSet, significance=0.05)
  dof = dataSet.size - 1
  dist = chi2UniformDistance(dataSet)
  chi2Probability(dof, dist) > significance
end

dsets = [ [ 199809, 200665, 199607, 200270, 199649 ],
          [ 522573, 244456, 139979,  71531,  21461 ] ]

for ds in dsets
  puts "Data set:#{ds}"
  dof = ds.size - 1
  puts "  degrees of freedom: %d" % dof
  distance = chi2UniformDistance(ds)
  puts "  distance:           %.4f" % distance
  puts "  probability:        %.4f" % chi2Probability(dof, distance)
  puts "  uniform?            %s" % (chi2IsUniform(ds) ? "Yes" : "No")
end

{{out}}


Data set:[199809, 200665, 199607, 200270, 199649]
  degrees of freedom: 4
  distance:           4.1463
  probability:        0.3866
  uniform?            Yes
Data set:[522573, 244456, 139979, 71531, 21461]
  degrees of freedom: 4
  distance:           790063.2759
  probability:        -0.0000
  uniform?            No

Scala

{{Out}}See it yourself by running in your browser [https://scastie.scala-lang.org/WUFeFG5WQkq2MZ51kBqaYA Scastie (remote JVM)]. {{libheader|Scala Math Statistic}} {{libheader|Scastie qualified}} {{works with|Scala|2.13}}

import org.apache.commons.math3.special.Gamma.regularizedGammaQ

object ChiSquare extends App {
  private val dataSets: Seq[Seq[Double]] =
    Seq(
      Seq(199809, 200665, 199607, 200270, 199649),
      Seq(522573, 244456, 139979, 71531, 21461)
    )

  private def χ2IsUniform(data: Seq[Double], significance: Double) =
    χ2Prob(data.size - 1.0, χ2Dist(data)) > significance

  private def χ2Dist(data: Seq[Double]) = {
    val avg = data.sum / data.size

    data.reduce((a, b) => a + math.pow(b - avg, 2)) / avg
  }

  private def χ2Prob(dof: Double, distance: Double) =
    regularizedGammaQ(dof / 2, distance / 2)

  printf(" %4s %10s  %12s %8s   %s%n",
    "d.f.", "χ²distance", "χ²probability", "Uniform?", "dataset")
  dataSets.foreach { ds =>
    val (dist, dof) = (χ2Dist(ds), ds.size - 1)

    printf("%4d %11.3f  %13.8f    %5s    %6s%n",
      dof, dist, χ2Prob(dof.toDouble, dist), if (χ2IsUniform(ds, 0.05)) "YES" else "NO", ds.mkString(", "))
  }
}

Sidef

# Confluent hypergeometric function of the first kind F_1(a;b;z)
func F1(a, b, z, limit=100) {
    sum(0..limit, {|k|
        rising_factorial(a, k) / rising_factorial(b, k) * z**k / k!
    })
}

func γ(a,x) {    # lower incomplete gamma function γ(a,x)
    #a**(-1) * x**a * F1(a, a+1, -x)            # simpler formula
    a**(-1) * x**a * exp(-x) * F1(1, a+1, x)    # slightly better convergence
}

func P(a,z) {    # regularized gamma function P(a,z)
    γ(a,z) / Γ(a)
}

func chi_squared_cdf (k, x) {
    var f = (k<20 ? 20 : 10)
    given(x) {
        when (0) { 0 }
        case (. < (k + f*sqrt(k))) { P(k/2, x/2) }
        else { 1 }
    }
}

func chi_squared_test(arr, significance = 0.05) {
    var n = arr.len
    var N = arr.sum
    var expected = N/n
    var χ_squared = arr.sum_by {|v| (v-expected)**2 / expected }
    var p_value = (1 - chi_squared_cdf(n-1, χ_squared))
    [χ_squared, p_value, p_value > significance]
}

[
    %n< 199809 200665 199607 200270 199649 >,
    %n< 522573 244456 139979  71531  21461 >,
].each {|dataset|
    var r = chi_squared_test(dataset)
    say "data: #{dataset}"
    say "χ² = #{r[0]}, p-value = #{r[1].round(-4)}, uniform = #{r[2]}\n"
}

{{out}}


data: [199809, 200665, 199607, 200270, 199649]
χ² = 4.14628, p-value = 0.3866, uniform = true

data: [522573, 244456, 139979, 71531, 21461]
χ² = 790063.27594, p-value = 0, uniform = false

Tcl

{{works with|Tcl|8.5}} {{tcllib|math::statistics}}

package require Tcl 8.5
package require math::statistics

proc isUniform {distribution {significance 0.05}} {
    set count [tcl::mathop::+ {*}[dict values $distribution]]
    set expected [expr {double($count) / [dict size $distribution]}]
    set X2 0.0
    foreach value [dict values $distribution] {
	set X2 [expr {$X2 + ($value - $expected)**2 / $expected}]
    }
    set degreesOfFreedom [expr {[dict size $distribution] - 1}]
    set likelihoodOfRandom [::math::statistics::incompleteGamma \
	[expr {$degreesOfFreedom / 2.0}] [expr {$X2 / 2.0}]]
    expr {$likelihoodOfRandom > $significance}
}

Testing:

proc makeDistribution {operation {count 1000000}} {
    for {set i 0} {$i<$count} {incr i} {incr distribution([uplevel 1 $operation])}
    return [array get distribution]
}

set distFair [makeDistribution {expr int(rand()*5)}]
puts "distribution \"$distFair\" assessed as [expr [isUniform $distFair]?{fair}:{unfair}]"
set distUnfair [makeDistribution {expr int(rand()*rand()*5)}]
puts "distribution \"$distUnfair\" assessed as [expr [isUniform $distUnfair]?{fair}:{unfair}]"

Output:

distribution "0 199809 4 199649 1 200665 2 199607 3 200270" assessed as fair
distribution "4 21461 0 522573 1 244456 2 139979 3 71531" assessed as unfair

VBA

The built in worksheetfunction ChiSq_Dist of Excel VBA is used. Output formatted like R.

Private Function Test4DiscreteUniformDistribution(ObservationFrequencies() As Variant, Significance As Single) As Boolean
    'Returns true if the observed frequencies pass the Pearson Chi-squared test at the required significance level.
    Dim Total As Long, Ei As Long, i As Integer
    Dim ChiSquared As Double, DegreesOfFreedom As Integer, p_value As Double
    Debug.Print "[1] ""Data set:"" ";
    For i = LBound(ObservationFrequencies) To UBound(ObservationFrequencies)
        Total = Total + ObservationFrequencies(i)
        Debug.Print ObservationFrequencies(i); " ";
    Next i
    DegreesOfFreedom = UBound(ObservationFrequencies) - LBound(ObservationFrequencies)
    'This is exactly the number of different categories minus 1
    Ei = Total / (DegreesOfFreedom + 1)
    For i = LBound(ObservationFrequencies) To UBound(ObservationFrequencies)
        ChiSquared = ChiSquared + (ObservationFrequencies(i) - Ei) ^ 2 / Ei
    Next i
    p_value = 1 - WorksheetFunction.ChiSq_Dist(ChiSquared, DegreesOfFreedom, True)
    Debug.Print
    Debug.Print "   Chi-squared test for given frequencies"
    Debug.Print "X-squared ="; ChiSquared; ", ";
    Debug.Print "df ="; DegreesOfFreedom; ", ";
    Debug.Print "p-value = "; Format(p_value, "0.0000")
    Test4DiscreteUniformDistribution = p_value > Significance
End Function
Public Sub test()
    Dim O() As Variant
    O = [{199809,200665,199607,200270,199649}]
    Debug.Print "[1] ""Uniform? "; Test4DiscreteUniformDistribution(O, 0.05); """"
    O = [{522573,244456,139979,71531,21461}]
    Debug.Print "[1] ""Uniform? "; Test4DiscreteUniformDistribution(O, 0.05); """"
End Sub

{{out}

[1] "Data set:"  199809   200665   199607   200270   199649
   Chi-squared test for given frequencies
X-squared = 4.14628 , df = 4 , p-value = 0.3866
[1] "Uniform? True"
[1] "Data set:"  522573   244456   139979   71531   21461
   Chi-squared test for given frequencies
X-squared = 790063.27594 , df = 4 , p-value = 0.0000
[1] "Uniform? False"

zkl

{{trans|C}} {{trans|D}}

/* Numerical integration method */
fcn Simpson3_8(f,a,b,N){  // fcn,double,double,Int --> double
   h,h1:=(b - a)/N, h/3.0;
   h*[1..3*N - 1].reduce('wrap(sum,j){
      l1:=(if(j%3) 3.0 else 2.0);
      sum + l1*f(a + h1*j);
   },f(a) + f(b))/8.0;
}

const A=12;
fcn Gamma_Spouge(z){  // double --> double
   var coefs=fcn{  // this runs only once, at construction time
      a,coefs:=A.toFloat(),(A).pump(List(),0.0);
      k1_factrl:=1.0;
      coefs[0]=(2.0*(0.0).pi).sqrt();
      foreach k in ([1.0..A-1]){
         coefs[k]=(a - k).exp() * (a - k).pow(k - 0.5) / k1_factrl;
	 k1_factrl*=-k;
      }
      coefs
   }();

   ( [1..A-1].reduce('wrap(accum,k){ accum + coefs[k]/(z + k) },coefs[0])
     * (-(z + A)).exp()*(z + A).pow(z + 0.5) )
   / z;
}

fcn f0(t,aa1){ t.pow(aa1)*(-t).exp() }

fcn GammaIncomplete_Q(a,x){  // double,double --> double
   h:=1.5e-2;  /* approximate integration step size */
   /* this cuts off the tail of the integration to speed things up */
   y:=a - 1; f:=f0.fp1(y);
   while((f(y)*(x - y)>2.0e-8) and (y<x)){ y+=0.4; }
   if(y>x) y=x;
   1.0 - Simpson3_8(f,0.0,y,(y/h).toInt())/Gamma_Spouge(a);
}
fcn chi2UniformDistance(ds){ // --> double
   dslen   :=ds.len();
   expected:=dslen.reduce('wrap(sum,k){ sum + ds[k] },0.0)/dslen;
   sum     := dslen.reduce('wrap(sum,k){ x:=ds[k] - expected; sum + x*x },0.0);
   sum/expected
}

fcn chi2Probability(dof,distance){ GammaIncomplete_Q(0.5*dof, 0.5*distance) }

fcn chiIsUniform(dset,significance=0.05){
   significance < chi2Probability(-1.0 + dset.len(),chi2UniformDistance(dset))
}
datasets:=T( T(199809.0, 200665.0, 199607.0, 200270.0, 199649.0),
             T(522573.0, 244456.0, 139979.0,  71531.0,  21461.0) );
println(" %4s %12s  %12s %8s   %s".fmt(
        "dof", "distance", "probability", "Uniform?", "dataset"));
foreach ds in (datasets){
   dof :=ds.len() - 1;
   dist:=chi2UniformDistance(ds);
   prob:=chi2Probability(dof,dist);
   println("%4d %12.3f  %12.8f    %5s    %6s".fmt(
            dof, dist, prob, chiIsUniform(ds) and "YES" or "NO",
	    ds.concat(",")));
}

{{out}}


  dof     distance   probability Uniform?   dataset
   4        4.146    0.38657083      YES    199809,200665,199607,200270,199649
   4   790063.276    0.00000000       NO    522573,244456,139979,71531,21461

{{omit from|GUISS}}