⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task}}
A tree structure (i.e. a rooted, connected acyclic graph) is often used in programming.
It's often helpful to visually examine such a structure.
There are many ways to represent trees to a reader, such as:
:::* indented text (à la unix tree
command)
:::* nested HTML tables
:::* hierarchical GUI widgets
:::* 2D or 3D images
:::* etc.
;Task: Write a program to produce a visual representation of some tree.
The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly.
Make do with the vague term "friendly" the best you can.
11l
{{trans|D}}
T Node
String value
Node? left
Node? right
F (value, Node? left = N, Node? right = N)
.value = String(value)
.left = left
.right = right
F tree_indent() -> [String]
V tr = I .right != N {.right.tree_indent()} E [‘-- (null)’]
R [‘--’(.value)] [+] (I .left != N {.left.tree_indent()} E [‘-- (null)’]).map(a -> ‘ |’a)
[+] [‘ `’tr[0]] + tr[1..].map(a -> ‘ ’a)
V tree = Node(1, Node(2, Node(4, Node(7)), Node(5)), Node(3, Node(6, Node(8), Node(9))))
print(tree.tree_indent().join("\n"))
Ada
Prints a tree of the current directory.
with Ada.Text_IO, Ada.Directories;
procedure Directory_Tree is
procedure Print_Tree(Current: String; Indention: Natural := 0) is
function Spaces(N: Natural) return String is
(if N= 0 then "" else " " & Spaces(N-1));
use Ada.Directories;
Search: Search_Type;
Found: Directory_Entry_Type;
begin
Start_Search(Search, Current, "");
while More_Entries(Search) loop
Get_Next_Entry(Search, Found);
declare
Name: String := Simple_Name(Found);
Dir: Boolean := Kind(Found) = Directory;
begin
if Name(Name'First) /= '.' then
-- skip all files who's names start with ".", namely "." and ".."
Ada.Text_IO.Put_Line(Spaces(2*Indention) & Simple_Name(Found)
& (if Dir then " (dir)" else ""));
if Dir then
Print_Tree(Full_Name(Found), Indention + 1);
end if;
end if;
end;
end loop;
end Print_Tree;
begin
Print_Tree(Ada.Directories.Current_Directory);
end Directory_Tree;
{{out}}
outer (dir)
inner (dir)
innermost (dir)
file
another
file
some
ALGOL 68
# outputs nested html tables to visualise a tree #
# mode representing nodes of the tree #
MODE NODE = STRUCT( STRING value, REF NODE child, REF NODE sibling );
REF NODE nil node = NIL;
# tags etc. #
STRING table = "<table border=""1"" cellspacing=""4"">"
, elbat = "</table>"
, tr = "<tr>"
, rt = "</tr>"
, td = "<td style=""text-align: center; vertical-align: top; """
, dt = "</td>"
, nbsp = " "
;
CHAR nl = REPR 10;
# returns the number of child elements of tree #
OP CHILDCOUNT = ( REF NODE tree )INT:
BEGIN
INT result := 0;
REF NODE child := child OF tree;
WHILE REF NODE( child ) ISNT nil node
DO
result +:= 1;
child := sibling OF child
OD;
result
END # CHILDCOUNT # ;
# generates nested HTML tables from the tree #
OP TOHTML = ( REF NODE tree )STRING:
IF tree IS nil node
THEN
# no node #
""
ELSE
# hae at least one node #
STRING result := "";
INT child count = CHILDCOUNT tree;
result +:= table + nl
+ tr + nl
+ td + " colspan="""
+ whole( IF child count < 1 THEN 1 ELSE child count FI, 0 )
+ """>" + nbsp + value OF tree + nbsp
+ dt + nl
+ rt + nl
;
IF child count > 0
THEN
# the node has branches #
REF NODE child := child OF tree;
INT child number := 1;
INT mid child = ( child count + 1 ) OVER 2;
child := child OF tree;
result +:= tr + nl;
WHILE child ISNT nil node
DO
result +:= td + ">" + nl
+ IF CHILDCOUNT child < 1 THEN nbsp + value OF child + nbsp ELSE TOHTML child FI
+ dt + nl;
child := sibling OF child
OD;
result +:= rt + nl
FI;
result +:= elbat + nl
FI # TOHTML # ;
# test the tree visualisation #
# returns a new node with the specified value and no child or siblings #
PROC new node = ( STRING value )REF NODE: HEAP NODE := NODE( value, nil node, nil node );
# appends a sibling node to the node n, returns the sibling #
OP +:= = ( REF NODE n, REF NODE sibling node )REF NODE:
BEGIN
REF NODE sibling := n;
WHILE REF NODE( sibling OF sibling ) ISNT nil node
DO
sibling := sibling OF sibling
OD;
sibling OF sibling := sibling node
END # +:= # ;
# appends a new sibling node to the node n, returns the sibling #
OP +:= = ( REF NODE n, STRING sibling value )REF NODE: n +:= new node( sibling value );
# adds a child node to the node n, returns the child #
OP /:= = ( REF NODE n, REF NODE child node )REF NODE: child OF n := child node;
# adda a new child node to the node n, returns the child #
OP /:= = ( REF NODE n, STRING child value )REF NODE: n /:= new node( child value );
NODE animals := new node( "animals" );
NODE fish := new node( "fish" );
NODE reptiles := new node( "reptiles" );
NODE mammals := new node( "mammals" );
NODE primates := new node( "primates" );
NODE sharks := new node( "sharks" );
sharks /:= "great-white" +:= "hammer-head";
fish /:= "cod" +:= sharks +:= "piranha";
reptiles /:= "iguana" +:= "brontosaurus";
primates /:= "gorilla" +:= "lemur";
mammals /:= "sloth" +:= "horse" +:= "bison" +:= primates;
animals /:= fish +:= reptiles +:= mammals;
print( ( TOHTML animals ) )
{{out}}
animals | ||||||||||||||||||||||||||||
|
|
|
AppleScript
Using UTF8 box-drawing characters in a monospaced font, with options for (1.) compacted vs vertically centered display, and (2.) retaining or pruning out nodeless lines of text.
{{Trans|Python}} {{Trans|JavaScript}}
-- Vertically centered textual tree using UTF8 monospaced -- box-drawing characters, with options for compacting -- and pruning. -- ┌── Gamma -- ┌─ Beta ┼── Delta -- │ └ Epsilon -- Alpha ┼─ Zeta ───── Eta -- │ ┌─── Iota -- └ Theta ┼── Kappa -- └─ Lambda -- TESTS -------------------------------------------------- on run set tree to Node(1, ¬ {Node(2, ¬ {Node(4, {Node(7, {})}), ¬ Node(5, {})}), ¬ Node(3, ¬ {Node(6, ¬ {Node(8, {}), Node(9, {})})})}) set tree2 to Node("Alpha", ¬ {Node("Beta", ¬ {Node("Gamma", {}), ¬ Node("Delta", {}), ¬ Node("Epsilon", {})}), ¬ Node("Zeta", {Node("Eta", {})}), ¬ Node("Theta", ¬ {Node("Iota", {}), Node("Kappa", {}), ¬ Node("Lambda", {})})}) set strTrees to unlines({"(NB – view in mono-spaced font)\n\n", ¬ "Compacted (not all parents vertically centered):\n", ¬ drawTree2(true, false, tree), ¬ "\nFully expanded and vertically centered:\n", ¬ drawTree2(false, false, tree2), ¬ "\nVertically centered, with nodeless lines pruned out:\n", ¬ drawTree2(false, true, tree2)}) set the clipboard to strTrees strTrees end run -- drawTree2 :: Bool -> Bool -> Tree String -> String on drawTree2(blnCompressed, blnPruned, tree) -- Tree design and algorithm inspired by the Haskell snippet at: -- https://doisinkidney.com/snippets/drawing-trees.html script measured on |λ|(t) script go on |λ|(x) set s to " " & x & " " Tuple(length of s, s) end |λ| end script fmapTree(go, t) end |λ| end script set measuredTree to |λ|(tree) of measured script levelMax on |λ|(a, level) a & maximum(map(my fst, level)) end |λ| end script set levelWidths to foldl(levelMax, {}, ¬ init(levels(measuredTree))) -- Lefts, Mid, Rights script lmrFromStrings on |λ|(xs) set {ls, rs} to items 2 thru -2 of ¬ (splitAt((length of xs) div 2, xs) as list) Tuple3(ls, item 1 of rs, rest of rs) end |λ| end script script stringsFromLMR on |λ|(lmr) script add on |λ|(a, x) a & x end |λ| end script foldl(add, {}, items 2 thru -2 of (lmr as list)) end |λ| end script script fghOverLMR on |λ|(f, g, h) script property mg : mReturn(g) on |λ|(lmr) set {ls, m, rs} to items 2 thru -2 of (lmr as list) Tuple3(map(f, ls), |λ|(m) of mg, map(h, rs)) end |λ| end script end |λ| end script script lmrBuild on leftPad(n) script on |λ|(s) replicateString(n, space) & s end |λ| end script end leftPad -- lmrBuild main on |λ|(w, f) script property mf : mReturn(f) on |λ|(wsTree) set xs to nest of wsTree set lng to length of xs set {nChars, x} to items 2 thru -2 of ¬ ((root of wsTree) as list) set _x to replicateString(w - nChars, "─") & x -- LEAF NODE ------------------------------------ if 0 = lng then Tuple3({}, _x, {}) else if 1 = lng then -- NODE WITH SINGLE CHILD --------------------- set indented to leftPad(1 + w) script lineLinked on |λ|(z) _x & "─" & z end |λ| end script |λ|(|λ|(item 1 of xs) of mf) of ¬ (|λ|(indented, lineLinked, indented) of ¬ fghOverLMR) else -- NODE WITH CHILDREN ------------------------- script treeFix on cFix(x) script on |λ|(xs) x & xs end |λ| end script end cFix on |λ|(l, m, r) compose(stringsFromLMR, ¬ |λ|(cFix(l), cFix(m), cFix(r)) of ¬ fghOverLMR) end |λ| end script script linked on |λ|(s) set c to text 1 of s set t to tail(s) if "┌" = c then _x & "┬" & t else if "│" = c then _x & "┤" & t else if "├" = c then _x & "┼" & t else _x & "┴" & t end if end |λ| end script set indented to leftPad(w) set lmrs to map(f, xs) if blnCompressed then set sep to {} else set sep to {"│"} end if tell lmrFromStrings set tupleLMR to |λ|(intercalate(sep, ¬ {|λ|(item 1 of lmrs) of ¬ (|λ|(" ", "┌", "│") of treeFix)} & ¬ map(|λ|("│", "├", "│") of treeFix, ¬ init(tail(lmrs))) & ¬ {|λ|(item -1 of lmrs) of ¬ (|λ|("│", "└", " ") of treeFix)})) end tell |λ|(tupleLMR) of ¬ (|λ|(indented, linked, indented) of fghOverLMR) end if end |λ| end script end |λ| end script set treeLines to |λ|(|λ|(measuredTree) of ¬ foldr(lmrBuild, 0, levelWidths)) of stringsFromLMR if blnPruned then script notEmpty on |λ|(s) script isData on |λ|(c) "│ " does not contain c end |λ| end script any(isData, characters of s) end |λ| end script set xs to filter(notEmpty, treeLines) else set xs to treeLines end if unlines(xs) end drawTree2 -- GENERIC ------------------------------------------------ -- Node :: a -> [Tree a] -> Tree a on Node(v, xs) {type:"Node", root:v, nest:xs} end Node -- Tuple (,) :: a -> b -> (a, b) on Tuple(a, b) -- Constructor for a pair of values, possibly of two different types. {type:"Tuple", |1|:a, |2|:b, length:2} end Tuple -- Tuple3 (,,) :: a -> b -> c -> (a, b, c) on Tuple3(x, y, z) {type:"Tuple3", |1|:x, |2|:y, |3|:z, length:3} end Tuple3 -- Applied to a predicate and a list, -- |any| returns true if at least one element of the -- list satisfies the predicate. -- any :: (a -> Bool) -> [a] -> Bool on any(f, xs) tell mReturn(f) set lng to length of xs repeat with i from 1 to lng if |λ|(item i of xs) then return true end repeat false end tell end any -- compose (<<<) :: (b -> c) -> (a -> b) -> a -> c on compose(f, g) script property mf : mReturn(f) property mg : mReturn(g) on |λ|(x) |λ|(|λ|(x) of mg) of mf end |λ| end script end compose -- concat :: [[a]] -> [a] -- concat :: [String] -> String on concat(xs) set lng to length of xs if 0 < lng and string is class of (item 1 of xs) then set acc to "" else set acc to {} end if repeat with i from 1 to lng set acc to acc & item i of xs end repeat acc end concat -- concatMap :: (a -> [b]) -> [a] -> [b] on concatMap(f, xs) set lng to length of xs set acc to {} tell mReturn(f) repeat with i from 1 to lng set acc to acc & (|λ|(item i of xs, i, xs)) end repeat end tell return acc end concatMap -- filter :: (a -> Bool) -> [a] -> [a] on filter(f, xs) tell mReturn(f) set lst to {} set lng to length of xs repeat with i from 1 to lng set v to item i of xs if |λ|(v, i, xs) then set end of lst to v end repeat return lst end tell end filter -- fmapTree :: (a -> b) -> Tree a -> Tree b on fmapTree(f, tree) script go property g : |λ| of mReturn(f) on |λ|(x) set xs to nest of x if xs ≠ {} then set ys to map(go, xs) else set ys to xs end if Node(g(root of x), ys) end |λ| end script |λ|(tree) of go end fmapTree -- foldl :: (a -> b -> a) -> a -> [b] -> a on foldl(f, startValue, xs) tell mReturn(f) set v to startValue set lng to length of xs repeat with i from 1 to lng set v to |λ|(v, item i of xs, i, xs) end repeat return v end tell end foldl -- foldr :: (a -> b -> b) -> b -> [a] -> b on foldr(f, startValue, xs) tell mReturn(f) set v to startValue set lng to length of xs repeat with i from lng to 1 by -1 set v to |λ|(item i of xs, v, i, xs) end repeat return v end tell end foldr -- fst :: (a, b) -> a on fst(tpl) if class of tpl is record then |1| of tpl else item 1 of tpl end if end fst -- identity :: a -> a on identity(x) -- The argument unchanged. x end identity -- init :: [a] -> [a] -- init :: [String] -> [String] on init(xs) set blnString to class of xs = string set lng to length of xs if lng > 1 then if blnString then text 1 thru -2 of xs else items 1 thru -2 of xs end if else if lng > 0 then if blnString then "" else {} end if else missing value end if end init -- intercalate :: [a] -> [[a]] -> [a] -- intercalate :: String -> [String] -> String on intercalate(sep, xs) concat(intersperse(sep, xs)) end intercalate -- intersperse(0, [1,2,3]) -> [1, 0, 2, 0, 3] -- intersperse :: a -> [a] -> [a] -- intersperse :: Char -> String -> String on intersperse(sep, xs) set lng to length of xs if lng > 1 then set acc to {item 1 of xs} repeat with i from 2 to lng set acc to acc & {sep, item i of xs} end repeat if class of xs is string then concat(acc) else acc end if else xs end if end intersperse -- isNull :: [a] -> Bool -- isNull :: String -> Bool on isNull(xs) if class of xs is string then "" = xs else {} = xs end if end isNull -- iterateUntil :: (a -> Bool) -> (a -> a) -> a -> [a] on iterateUntil(p, f, x) script property mp : mReturn(p)'s |λ| property mf : mReturn(f)'s |λ| property lst : {x} on |λ|(v) repeat until mp(v) set v to mf(v) set end of lst to v end repeat return lst end |λ| end script |λ|(x) of result end iterateUntil -- levels :: Tree a -> [[a]] on levels(tree) script nextLayer on |λ|(xs) script on |λ|(x) nest of x end |λ| end script concatMap(result, xs) end |λ| end script script roots on |λ|(xs) script on |λ|(x) root of x end |λ| end script map(result, xs) end |λ| end script map(roots, iterateUntil(my isNull, nextLayer, {tree})) end levels -- map :: (a -> b) -> [a] -> [b] on map(f, xs) -- The list obtained by applying f -- to each element of xs. tell mReturn(f) set lng to length of xs set lst to {} repeat with i from 1 to lng set end of lst to |λ|(item i of xs, i, xs) end repeat return lst end tell end map -- maximum :: Ord a => [a] -> a on maximum(xs) script on |λ|(a, b) if a is missing value or b > a then b else a end if end |λ| end script foldl(result, missing value, xs) end maximum -- mReturn :: First-class m => (a -> b) -> m (a -> b) on mReturn(f) -- 2nd class handler function lifted into 1st class script wrapper. if script is class of f then f else script property |λ| : f end script end if end mReturn -- replicateString :: Int -> String -> String on replicateString(n, s) set out to "" if n < 1 then return out set dbl to s repeat while (n > 1) if (n mod 2) > 0 then set out to out & dbl set n to (n div 2) set dbl to (dbl & dbl) end repeat return out & dbl end replicateString -- snd :: (a, b) -> b on snd(tpl) if class of tpl is record then |2| of tpl else item 2 of tpl end if end snd -- splitAt :: Int -> [a] -> ([a], [a]) on splitAt(n, xs) if n > 0 and n < length of xs then if class of xs is text then Tuple(items 1 thru n of xs as text, items (n + 1) thru -1 of xs as text) else Tuple(items 1 thru n of xs, items (n + 1) thru -1 of xs) end if else if n < 1 then Tuple({}, xs) else Tuple(xs, {}) end if end if end splitAt -- tail :: [a] -> [a] on tail(xs) set blnText to text is class of xs if blnText then set unit to "" else set unit to {} end if set lng to length of xs if 1 > lng then missing value else if 2 > lng then unit else if blnText then text 2 thru -1 of xs else rest of xs end if end if end tail -- unlines :: [String] -> String on unlines(xs) -- A single string formed by the intercalation -- of a list of strings with the newline character. set {dlm, my text item delimiters} to ¬ {my text item delimiters, linefeed} set str to xs as text set my text item delimiters to dlm str end unlines
{{Out}}
(NB – view in mono-spaced font)
Compacted (not all parents vertically centered):
┌ 4 ─ 7
┌ 2 ┴ 5
1 ┤ ┌ 8
└ 3 ─ 6 ┴ 9
Fully expanded and vertically centered:
┌── Gamma
│
┌─ Beta ┼── Delta
│ │
│ └ Epsilon
│
Alpha ┼─ Zeta ───── Eta
│
│ ┌─── Iota
│ │
└ Theta ┼── Kappa
│
└─ Lambda
Vertically centered, with nodeless lines pruned out:
┌── Gamma
┌─ Beta ┼── Delta
│ └ Epsilon
Alpha ┼─ Zeta ───── Eta
│ ┌─── Iota
└ Theta ┼── Kappa
└─ Lambda
Batch File
Displays a tree of the current directory.
@tree %cd%
BBC BASIC
{{works with|BBC BASIC for Windows}} This creates a native Windows Tree View control:
INSTALL @lib$+"WINLIB5"
ON ERROR SYS "MessageBox", @hwnd%, REPORT$, 0, 0 : QUIT
REM!WC Windows constants:
TVI_SORT = -65533
TVIF_TEXT = 1
TVM_INSERTITEM = 4352
TVS_HASBUTTONS = 1
TVS_HASLINES = 2
TVS_LINESATROOT = 4
REM. TV_INSERTSTRUCT
DIM tvi{hParent%, \
\ hInsertAfter%, \
\ mask%, \
\ hItem%, \
\ state%, \
\ stateMask%, \
\ pszText%, \
\ cchTextMax%, \
\ iImage%, \
\ iSelectedImage%,\
\ cChildren%, \
\ lParam% \
\ }
SYS "InitCommonControls"
hTree% = FN_createwindow("SysTreeView32", "", 0, 0, @vdu.tr%, @vdu.tb%, 0, \
\ TVS_HASLINES OR TVS_HASBUTTONS OR TVS_LINESATROOT, 0)
hroot% = FNinsertnode(0, "Root")
hchild1% = FNinsertnode(hroot%, "Child 1")
hchild2% = FNinsertnode(hroot%, "Child 2")
hchild11% = FNinsertnode(hchild1%, "Grandchild 1")
hchild12% = FNinsertnode(hchild1%, "Grandchild 2")
hchild21% = FNinsertnode(hchild2%, "Grandchild 3")
hchild22% = FNinsertnode(hchild2%, "Grandchild 4")
REPEAT
WAIT 1
UNTIL FALSE
END
DEF FNinsertnode(hparent%, text$)
LOCAL hnode%
text$ += CHR$0
tvi.hParent% = hparent%
tvi.hInsertAfter% = TVI_SORT
tvi.mask% = TVIF_TEXT
tvi.pszText% = !^text$
SYS "SendMessage", hTree%, TVM_INSERTITEM, 0, tvi{} TO hnode%
IF hnode% = 0 ERROR 100, "TVM_INSERTITEM failed"
SYS "InvalidateRect", hTree%, 0, 0
= hnode%
[[File:visualize_tree_bbc.gif]]
C
Print a simple tree to standard output:
#include <stdio.h> #include <stdlib.h> typedef struct stem_t *stem; struct stem_t { const char *str; stem next; }; void tree(int root, stem head) { static const char *sdown = " |", *slast = " `", *snone = " "; struct stem_t col = {0, 0}, *tail; for (tail = head; tail; tail = tail->next) { printf("%s", tail->str); if (!tail->next) break; } printf("--%d\n", root); if (root <= 1) return; if (tail && tail->str == slast) tail->str = snone; if (!tail) tail = head = &col; else tail->next = &col; while (root) { // make a tree by doing something random int r = 1 + (rand() % root); root -= r; col.str = root ? sdown : slast; tree(r, head); } tail->next = 0; } int main(int c, char**v) { int n; if (c < 2 || (n = atoi(v[1])) < 0) n = 8; tree(n, 0); return 0; }
{{out}}
--8
`--8
|--7
| |--3
| | |--2
| | | `--2
| | | `--2
| | | |--1
| | | `--1
| | `--1
| |--2
| | |--1
| | `--1
| |--1
| `--1
`--1
Clojure
(use 'vijual) (draw-tree [[:A] [:B] [:C [:D [:E] [:F]] [:G]]])
{{out}}
+---+ +---+ +---+
| A | | B | | C |
+---+ +---+ +-+-+
|
+-----+
| |
+-+-+ +-+-+
| D | | G |
+-+-+ +---+
|
+--+--+
| |
+-+-+ +-+-+
| E | | F |
+---+ +---+
Common Lisp
(defun visualize (tree) (labels ((rprint (list) (mapc #'princ (reverse list))) (vis-h (tree branches) (let ((len (length tree))) (loop for item in tree for idx from 1 to len do (cond ((listp item) (rprint (cdr branches)) (princ "+---+") (let ((next (cons "| " (if (= idx len) (cons " " (cdr branches)) branches)))) (terpri) (rprint (if (null item) (cdr next) next)) (terpri) (vis-h item next))) (t (rprint (cdr branches)) (princ item) (terpri) (rprint (if (= idx len) (cdr branches) branches)) (terpri))))))) (vis-h tree '("| "))))
{{out}}
CL-USER> (visualize '(a b c ((d (e ((() ()))) f)) (g))) A | B | C | +---+ | | | +---+ | | | D | | | +---+ | | | | | E | | | | | +---+ | | | | | +---+ | | | | | +---+ | | | | | +---+ | | | F | +---+ | G NIL
D
{{trans|Haskell}}
import std.stdio, std.conv, std.algorithm, std.array; struct Node(T) { T value; Node* left, right; } string[] treeIndent(T)(in Node!T* t) pure nothrow @safe { if (!t) return ["-- (null)"]; const tr = t.right.treeIndent; return "--" ~ t.value.text ~ t.left.treeIndent.map!q{" |" ~ a}.array ~ (" `" ~ tr[0]) ~ tr[1 .. $].map!q{" " ~ a}.array; } void main () { static N(T)(T v, Node!T* l=null, Node!T* r=null) { return new Node!T(v, l, r); } const tree = N(1, N(2, N(4, N(7)), N(5)), N(3, N(6, N(8), N(9)))); writefln("%-(%s\n%)", tree.treeIndent); }
{{out}}
--1
|--2
| |--4
| | |--7
| | | |-- (null)
| | | `-- (null)
| | `-- (null)
| `--5
| |-- (null)
| `-- (null)
`--3
|--6
| |--8
| | |-- (null)
| | `-- (null)
| `--9
| |-- (null)
| `-- (null)
`-- (null)
Elena
ELENA 4.1 :
/// a program to produce a visual representation of some tree.
import system'routines;
import extensions;
class Node
{
string theValue;
Node[] theChildren;
constructor new(string value, Node[] children)
{
theValue := value;
theChildren := children;
}
constructor new(string value)
<= new(value, new Node[](0));
constructor new(Node[] children)
<= new(emptyString, children);
get() = theValue;
Children = theChildren;
}
extension treeOp
{
writeTree(node, prefix)
{
var children := node.Children;
var length := children.Length;
children.zipForEach(new Range(1, length), (child,index)
{
self.printLine(prefix,"|");
self.printLine(prefix,"+---",child.get());
var nodeLine := prefix + (index==length).iif(" ","| ");
self.writeTree(child,nodeLine);
});
^ self
}
writeTree(node)
= self.writeTree(node,"");
}
public program()
{
var tree := Node.new(
new Node[]::(
Node.new("a", new Node[]::
(
Node.new("b", new Node[]::(Node.new("c"))),
Node.new("d")
)),
Node.new("e")
));
console.writeTree(tree).readChar()
}
{{out}}
|
+---a
| |
| +---b
| | |
| | +---c
| |
| +---d
|
+---b
Erlang
Until real code shows up, I follow the lead of Python and print tuples with a width of 1. {{out}}
9> io:fwrite("~1p", [{1, 2, {30, 40}, {{500, 600}, 70}}]).
{1,
2,
{30,
40},
{{500,
600},
70}}
=={{header|F_Sharp|F#}}==
type tree = | T of string * tree list let prefMid = seq { yield "├─"; while true do yield "│ " } let prefEnd = seq { yield "└─"; while true do yield " " } let prefNone = seq { while true do yield "" } let c2 x y = Seq.map2 (fun u v -> String.concat "" [u; v]) x y let rec visualize (T(label, children)) pre = seq { yield (Seq.head pre) + label if children <> [] then let preRest = Seq.skip 1 pre let last = Seq.last (List.toSeq children) for e in children do if e = last then yield! visualize e (c2 preRest prefEnd) else yield! visualize e (c2 preRest prefMid) } let example = T ("root", [T ("a", [T ("a1", [T ("a11", []); T ("a12", []) ]) ]); T ("b", [T ("b1", []) ]) ]) visualize example prefNone |> Seq.iter (printfn "%s")
{{out}}
root
├─a
│ └─a1
│ ├─a11
│ └─a12
└─b
└─b1
Factor
Factor's prettyprinter does this by default with any nested sequences and/or tuples. There are dynamic variables that can be altered to change the prettyprinter's default behavior. The most interesting are tab-size
and margin
for customizing the look of a tree. For smaller trees, it's best to change margin
from its default of 64
to something low, perhaps 10
.
USE: literals
CONSTANT: mammals { "mammals" { "deer" "gorilla" "dolphin" } }
CONSTANT: reptiles { "reptiles" { "turtle" "lizard" "snake" } }
{ "animals" ${ mammals reptiles } } dup . 10 margin set .
{{out}}
{
"animals"
{
{ "mammals" { "deer" "gorilla" "dolphin" } }
{ "reptiles" { "turtle" "lizard" "snake" } }
}
}
{
"animals"
{
{
"mammals"
{
"deer"
"gorilla"
"dolphin"
}
}
{
"reptiles"
{
"turtle"
"lizard"
"snake"
}
}
}
}
An example showcasing tuples by displaying an AVL tree:
USE: trees.avl
AVL{ { 1 2 } { 9 19 } { 3 4 } { 5 6 } } .
{{out}}
T{ avl
{ root
T{ avl-node
{ key 3 }
{ value 4 }
{ left
T{ avl-node
{ key 1 }
{ value 2 }
{ balance 0 }
}
}
{ right
T{ avl-node
{ key 9 }
{ value 19 }
{ left
T{ avl-node
{ key 5 }
{ value 6 }
{ balance 0 }
}
}
{ balance -1 }
}
}
{ balance 1 }
}
}
{ count 4 }
}
=={{header|Fōrmulæ}}==
In [http://wiki.formulae.org/Visualize_a_tree this] page you can see the solution of this task.
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text ([http://wiki.formulae.org/Editing_F%C5%8Drmul%C3%A6_expressions more info]). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.
The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.
Go
JSON
Not the most economical output, but at least json.MarshalIndent is in the Go standard library. Note that the definition of Node has nothing JSON specific about it; it's an ordinary struct.
package main import ( "encoding/json" "fmt" "log" ) type Node struct { Name string Children []*Node } func main() { tree := &Node{"root", []*Node{ &Node{"a", []*Node{ &Node{"d", nil}, &Node{"e", []*Node{ &Node{"f", nil}, }}}}, &Node{"b", nil}, &Node{"c", nil}, }} b, err := json.MarshalIndent(tree, "", " ") if err != nil { log.Fatal(err) } fmt.Println(string(b)) }
{{out}}
{
"Name": "root",
"Children": [
{
"Name": "a",
"Children": [
{
"Name": "d",
"Children": null
},
{
"Name": "e",
"Children": [
{
"Name": "f",
"Children": null
}
]
}
]
},
{
"Name": "b",
"Children": null
},
{
"Name": "c",
"Children": null
}
]
}
TOML
It works in this case, but TOML wasn't really designed for this and encoders may have trouble with general trees. Empty trees and nils for example might be problematic depending on your data structures and limitations of your TOML encoder. YMMV.
package main import ( "log" "os" "github.com/BurntSushi/toml" ) type Node struct { Name string Children []*Node } func main() { tree := &Node{"root", []*Node{ &Node{"a", []*Node{ &Node{"d", nil}, &Node{"e", []*Node{ &Node{"f", nil}, }}}}, &Node{"b", nil}, &Node{"c", nil}, }} enc := toml.NewEncoder(os.Stdout) enc.Indent = " " err := enc.Encode(tree) if err != nil { log.Fatal(err) } }
{{out}}
Name = "root"
[[Children]]
Name = "a"
[[Children.Children]]
Name = "d"
[[Children.Children]]
Name = "e"
[[Children.Children.Children]]
Name = "f"
[[Children]]
Name = "b"
[[Children]]
Name = "c"
Unicode
A non-library solution, more like a number of other solutions on this page, and with more compact output. The tree representation here uses integer indexes rather than pointers, which is efficient for representation and computation. A serialization format like JSON or TOML wouldn't see it as a hierarchical structure, but the code here knows to interpret the child ints as node indexes.
package main import "fmt" type tree []node type node struct { label string children []int // indexes into tree } func main() { vis(tree{ 0: node{"root", []int{1, 2, 3}}, 1: node{"ei", []int{4, 5}}, 2: node{"bee", nil}, 3: node{"si", nil}, 4: node{"dee", nil}, 5: node{"y", []int{6}}, 6: node{"eff", nil}, }) } func vis(t tree) { if len(t) == 0 { fmt.Println("<empty>") return } var f func(int, string) f = func(n int, pre string) { ch := t[n].children if len(ch) == 0 { fmt.Println("╴", t[n].label) return } fmt.Println("┐", t[n].label) last := len(ch) - 1 for _, ch := range ch[:last] { fmt.Print(pre, "├─") f(ch, pre+"│ ") } fmt.Print(pre, "└─") f(ch[last], pre+" ") } f(0, "") }
{{out}}
┐ root
├─┐ ei
│ ├─╴ dee
│ └─┐ y
│ └─╴ eff
├─╴ bee
└─╴ si
Haskell
Tree borrowed from [[Tree traversal]]:
data Tree a = Empty | Node { value :: a, left :: Tree a, right :: Tree a } deriving (Show, Eq) tree = Node 1 (Node 2 (Node 4 (Node 7 Empty Empty) Empty) (Node 5 Empty Empty)) (Node 3 (Node 6 (Node 8 Empty Empty) (Node 9 Empty Empty)) Empty) treeIndent Empty = ["-- (nil)"] treeIndent t = ["--" ++ show (value t)] ++ map (" |"++) ls ++ (" `" ++ r):map (" "++) rs where (r:rs) = treeIndent$right t ls = treeIndent$left t main = mapM_ putStrLn $ treeIndent tree
{{out}}
--1
|--2
| |--4
| | |--7
| | | |-- (nil)
| | | `-- (nil)
| | `-- (nil)
| `--5
| |-- (nil)
| `-- (nil)
`--3
|--6
| |--8
| | |-- (nil)
| | `-- (nil)
| `--9
| |-- (nil)
| `-- (nil)
`-- (nil)
The '''Data.Tree''' module in the standard (GHC) libraries also includes a '''drawTree''' function for multiway (rose) trees of strings.
We can ''fmap show'' over our tree of integers to derive a tree of strings, and apply drawTree
to that.
import Data.Tree (Tree(..), drawTree) tree :: Tree Int tree = Node 1 [ Node 2 [Node 4 [Node 7 []], Node 5 []] , Node 3 [Node 6 [Node 8 [], Node 9 []]] ] main :: IO () main = (putStrLn . drawTree . fmap show) tree
{{Out}}
1
|
+- 2
| |
| +- 4
| | |
| | `- 7
| |
| `- 5
|
`- 3
|
`- 6
|
+- 8
|
`- 9
=={{header|Icon}} and {{header|Unicon}}==
The following works in both languages.
procedure main(A)
showTree("", " -", [1, [2,[3],[4,[5],[6]],[7,[11]]], [8,[9,[10]]] ])
write()
showTree("", " -", [1, [2,[3,[4]]], [5,[6],[7,[8],[9]],[10]] ])
end
procedure showTree(prefix, lastc, A)
write(prefix, lastc, "--", A[1])
if *A > 1 then {
prefix ||:= if prefix[-1] == "|" then " " else " "
every showTree(prefix||"|", "-", !A[2:2 < *A])
showTree(prefix, "`-", A[*A])
}
end
Output:
->tree
---1
|---2
| |---3
| |---4
| | |---5
| | `---6
| `---7
| `---11
`---8
`---9
`---10
---1
|---2
| `---3
| `---4
`---5
|---6
|---7
| |---8
| `---9
`---10
->
J
See: [[j:Essays/Tree Display]] for tree represented as label pairs.
Or, adapted to the [[Tree_traversal#J:_Alternate_implementation|parent index]] representation of a tree (which allows different nodes to share labels and may also be more convenient for other reasons):
BOXC=: 9!:6 '' NB. box drawing characters
EW =: {: BOXC NB. east-west
showtree=: 4 : 0
NB. y is parent index for each node (non-indices for root nodes)
NB. x is label for each node
t=. (<EW,' ') ,@<@,:@,&":&.> x NB. tree fragments
c=. |:(#~ e./@|:);(~.,"0&.>(</. i.@#)) y
while. +./ b=. ({.c)*.//.-.e.~/c do.
i=. b#~.{.c NB. parents whose children are leaves
j=. </./(({.c)e.i)#"1 c NB. leaves grouped by parents
t=. a: (;j)}t i}~ (i{t) subtree&.> j{&.><t
c=. (-.({.c)e.i)#"1 c NB. prune edges to leaves
end.
;([: ,.&.>/ extend&.>)&> t -. a:
)
subtree=: 4 : 0
p=. EW={."1 s=. >{.t=. graft y
(<(>{.x) root p),(<(connect p),.s),}.t
)
graft=: 3 : 0
n=. (-~ >./) #&> y
f=. i.@(,&0)@#&.>@{.&.> y
,&.>/ y ,&> n$&.>f
)
connect=: 3 : 0
b=. (+./\ *. +./\.) y
c=. (b+2*y){' ',9 3 3{BOXC NB. │ NS ├ E
c=. (0{BOXC) (b i. 1)}c NB. ┌ NW
c=. (6{BOXC) (b i: 1)}c NB. └ SW
j=. (b i. 1)+<.-:+/b
EW&(j})^:(1=+/b) c j}~ ((0 3 6 9{BOXC)i.j{c){1 4 7 5{BOXC
)
root=: 4 : 0
j=. k+<.-:1+(y i: 1)-k=. y i. 1
(-j)|.(#y){.x,.,:' ',EW
)
extend=: 3 : '(+./\"1 (y=EW) *. *./\."1 y e.'' '',EW)}y,:EW'
Example use:
(i.10) showtree _,}.p:inv i.10
┌─ 6
┌─ 1 ─── 3 ─┴─ 7
│ ┌─ 8
─ 0 ─┤ ┌─ 4 ─┴─ 9
└─ 2 ─┴─ 5
Java
Minimalist BST that can do nothing except print itself to stdout.
public class VisualizeTree { public static void main(String[] args) { BinarySearchTree tree = new BinarySearchTree(); tree.insert(100); for (int i = 0; i < 20; i++) tree.insert((int) (Math.random() * 200)); tree.display(); } } class BinarySearchTree { private Node root; private class Node { private int key; private Node left, right; Node(int k) { key = k; } } public boolean insert(int key) { if (root == null) root = new Node(key); else { Node n = root; Node parent; while (true) { if (n.key == key) return false; parent = n; boolean goLeft = key < n.key; n = goLeft ? n.left : n.right; if (n == null) { if (goLeft) { parent.left = new Node(key); } else { parent.right = new Node(key); } break; } } } return true; } public void display() { final int height = 5, width = 64; int len = width * height * 2 + 2; StringBuilder sb = new StringBuilder(len); for (int i = 1; i <= len; i++) sb.append(i < len - 2 && i % width == 0 ? "\n" : ' '); displayR(sb, width / 2, 1, width / 4, width, root, " "); System.out.println(sb); } private void displayR(StringBuilder sb, int c, int r, int d, int w, Node n, String edge) { if (n != null) { displayR(sb, c - d, r + 2, d / 2, w, n.left, " /"); String s = String.valueOf(n.key); int idx1 = r * w + c - (s.length() + 1) / 2; int idx2 = idx1 + s.length(); int idx3 = idx1 - w; if (idx2 < sb.length()) sb.replace(idx1, idx2, s).replace(idx3, idx3 + 2, edge); displayR(sb, c + d, r + 2, d / 2, w, n.right, "\\ "); } } }
100
/ \
49 106
/ \ / \
44 94 105 152
/ \ / / \
26 47 61 109 178
/ \ / \ \ /
12 33 51 88 119 159
JavaScript
HTML
Javascript wrapped in HTML5 document. ''Should'' work in modern browsers.
<!doctype html> <html id="doc"> <head><meta charset="utf-8"/> <title>Stuff</title> <script type="application/javascript"> function gid(id) { return document.getElementById(id); } function ce(tag, cls, parent_node) { var e = document.createElement(tag); e.className = cls; if (parent_node) parent_node.appendChild(e); return e; } function dom_tree(id) { gid('tree').textContent = ""; gid('tree').appendChild(mktree(gid(id), null)); } function mktree(e, p) { var t = ce("div", "tree", p); var tog = ce("span", "toggle", t); var h = ce("span", "tag", t); if (e.tagName === undefined) { h.textContent = "#Text"; var txt = e.textContent; if (txt.length > 0 && txt.match(/\S/)) { h = ce("div", "txt", t); h.textContent = txt; } return t; } tog.textContent = "−"; tog.onclick = function () { clicked(tog); } h.textContent = e.nodeName; var l = e.childNodes; for (var i = 0; i != l.length; i++) mktree(l[i], t); return t; } function clicked(e) { var is_on = e.textContent == "−"; e.textContent = is_on ? "+" : "−"; e.parentNode.className = is_on ? "tree-hide" : "tree"; } </script> <style> #tree { white-space: pre; font-family: monospace; border: 1px solid } .tree > .tree-hide, .tree > .tree { margin-left: 2em; border-left: 1px dotted rgba(0,0,0,.2)} .tree-hide > .tree, .tree-hide > .tree-hide { display: none } .tag { color: navy } .tree-hide > .tag { color: maroon } .txt { color: gray; padding: 0 .5em; margin: 0 .5em 0 2em; border: 1px dotted rgba(0,0,0,.1) } .toggle { display: inline-block; width: 2em; text-align: center } </style> </head> <body> <article> <section> <h1>Headline</h1> Blah blah </section> <section> <h1>More headline</h1> <blockquote>Something something</blockquote> <section><h2>Nested section</h2> Somethin somethin list: <ul> <li>Apples</li> <li>Oranges</li> <li>Cetera Fruits</li> </ul> </section> </section> </article> <div id="tree"><a href="javascript:dom_tree('doc')">click me</a></div> </body> </html>
Plain text
=Vertically centered tree=
{{Trans|Python}} (Functional version)
(() => { 'use strict'; // UTF8 character-drawn tree, with options for compacting vs // centering parents, and for pruning out nodeless lines. const example = ` ┌ Epsilon ┌─ Beta ┼─── Zeta │ └──── Eta Alpha ┼ Gamma ─── Theta │ ┌─── Iota └ Delta ┼── Kappa └─ Lambda` // drawTree2 :: Bool -> Bool -> Tree String -> String const drawTree2 = blnCompact => blnPruned => tree => { // Tree design and algorithm inspired by the Haskell snippet at: // https://doisinkidney.com/snippets/drawing-trees.html const // Lefts, Middle, Rights lmrFromStrings = xs => { const [ls, rs] = Array.from(splitAt( Math.floor(xs.length / 2), xs )); return Tuple3(ls, rs[0], rs.slice(1)); }, stringsFromLMR = lmr => Array.from(lmr).reduce((a, x) => a.concat(x), []), fghOverLMR = (f, g, h) => lmr => { const [ls, m, rs] = Array.from(lmr); return Tuple3(ls.map(f), g(m), rs.map(h)); }; const lmrBuild = (f, w) => wsTree => { const leftPad = n => s => ' '.repeat(n) + s, xs = wsTree.nest, lng = xs.length, [nChars, x] = Array.from(wsTree.root); // LEAF NODE -------------------------------------- return 0 === lng ? ( Tuple3([], '─'.repeat(w - nChars) + x, []) // NODE WITH SINGLE CHILD ------------------------- ) : 1 === lng ? (() => { const indented = leftPad(1 + w); return fghOverLMR( indented, z => '─'.repeat(w - nChars) + x + '─' + z, indented )(f(xs[0])); // NODE WITH CHILDREN ----------------------------- })() : (() => { const cFix = x => xs => x + xs, treeFix = (l, m, r) => compose( stringsFromLMR, fghOverLMR(cFix(l), cFix(m), cFix(r)) ), _x = '─'.repeat(w - nChars) + x, indented = leftPad(w), lmrs = xs.map(f); return fghOverLMR( indented, s => _x + ({ '┌': '┬', '├': '┼', '│': '┤', '└': '┴' })[s[0]] + s.slice(1), indented )(lmrFromStrings( intercalate( blnCompact ? [] : ['│'], [treeFix(' ', '┌', '│')(lmrs[0])] .concat(init(lmrs.slice(1)).map( treeFix('│', '├', '│') )) .concat([treeFix('│', '└', ' ')( lmrs[lmrs.length - 1] )]) ) )); })(); }; const measuredTree = fmapTree( v => { const s = ' ' + v + ' '; return Tuple(s.length, s) }, tree ), levelWidths = init(levels(measuredTree)) .reduce( (a, level) => a.concat(maximum(level.map(fst))), [] ), treeLines = stringsFromLMR( levelWidths.reduceRight( lmrBuild, x => x )(measuredTree) ); return unlines( blnPruned ? ( treeLines.filter( s => s.split('') .some(c => !' │'.includes(c)) ) ) : treeLines ); }; // TESTS ---------------------------------------------- const main = () => { // tree :: Tree String const tree = Node( 'Alpha', [ Node('Beta', [ Node('Epsilon', []), Node('Zeta', []), Node('Eta', []) ]), Node('Gamma', [Node('Theta', [])]), Node('Delta', [ Node('Iota', []), Node('Kappa', []), Node('Lambda', []) ]) ]); // tree2 :: Tree Int const tree2 = Node( 1, [ Node(2, [ Node(4, []), Node(5, [Node(7, [])]) ]), Node(3, [ Node(6, [ Node(8, []), Node(9, []) ]) ]) ] ); // strTrees :: String const strTrees = ([ 'Compacted (parents not all vertically centered):', drawTree2(true)(false)(tree2), 'Fully expanded, with vertical centering:', drawTree2(false)(false)(tree), 'Vertically centered, with nodeless lines pruned out:', drawTree2(false)(true)(tree), ].join('\n\n')); return ( console.log(strTrees), strTrees ); }; // GENERIC FUNCTIONS ---------------------------------- // Node :: a -> [Tree a] -> Tree a const Node = (v, xs) => ({ type: 'Node', root: v, // any type of value (consistent across tree) nest: xs || [] }); // Tuple (,) :: a -> b -> (a, b) const Tuple = (a, b) => ({ type: 'Tuple', '0': a, '1': b, length: 2 }); // Tuple3 (,,) :: a -> b -> c -> (a, b, c) const Tuple3 = (a, b, c) => ({ type: 'Tuple3', '0': a, '1': b, '2': c, length: 3 }); // compose (<<<) :: (b -> c) -> (a -> b) -> a -> c const compose = (f, g) => x => f(g(x)); // concat :: [[a]] -> [a] // concat :: [String] -> String const concat = xs => 0 < xs.length ? (() => { const unit = 'string' !== typeof xs[0] ? ( [] ) : ''; return unit.concat.apply(unit, xs); })() : []; // fmapTree :: (a -> b) -> Tree a -> Tree b const fmapTree = (f, tree) => { const go = node => Node( f(node.root), node.nest.map(go) ); return go(tree); }; // fst :: (a, b) -> a const fst = tpl => tpl[0]; // identity :: a -> a const identity = x => x; // init :: [a] -> [a] const init = xs => 0 < xs.length ? ( xs.slice(0, -1) ) : undefined; // intercalate :: [a] -> [[a]] -> [a] // intercalate :: String -> [String] -> String const intercalate = (sep, xs) => 0 < xs.length && 'string' === typeof sep && 'string' === typeof xs[0] ? ( xs.join(sep) ) : concat(intersperse(sep, xs)); // intersperse(0, [1,2,3]) -> [1, 0, 2, 0, 3] // intersperse :: a -> [a] -> [a] // intersperse :: Char -> String -> String const intersperse = (sep, xs) => { const bln = 'string' === typeof xs; return xs.length > 1 ? ( (bln ? concat : x => x)( (bln ? ( xs.split('') ) : xs) .slice(1) .reduce((a, x) => a.concat([sep, x]), [xs[0]]) )) : xs; }; // iterateUntil :: (a -> Bool) -> (a -> a) -> a -> [a] const iterateUntil = (p, f, x) => { const vs = [x]; let h = x; while (!p(h))(h = f(h), vs.push(h)); return vs; }; // Returns Infinity over objects without finite length. // This enables zip and zipWith to choose the shorter // argument when one is non-finite, like cycle, repeat etc // length :: [a] -> Int const length = xs => (Array.isArray(xs) || 'string' === typeof xs) ? ( xs.length ) : Infinity; // levels :: Tree a -> [[a]] const levels = tree => iterateUntil( xs => 1 > xs.length, ys => [].concat(...ys.map(nest)), [tree] ).map(xs => xs.map(root)); // maximum :: Ord a => [a] -> a const maximum = xs => 0 < xs.length ? ( xs.slice(1).reduce((a, x) => x > a ? x : a, xs[0]) ) : undefined; // nest :: Tree a -> [a] const nest = tree => tree.nest; // root :: Tree a -> a const root = tree => tree.root; // splitAt :: Int -> [a] -> ([a], [a]) const splitAt = (n, xs) => Tuple(xs.slice(0, n), xs.slice(n)); // unlines :: [String] -> String const unlines = xs => xs.join('\n'); // MAIN --- return main(); })();
{{Out}}
Compacted (parents not all vertically centered):
┌ 4
┌ 2 ┴ 5 ─ 7
1 ┤ ┌ 8
└ 3 ─ 6 ┴ 9
Fully expanded, with vertical centering:
┌ Epsilon
│
┌─ Beta ┼─── Zeta
│ │
│ └──── Eta
│
Alpha ┼ Gamma ─── Theta
│
│ ┌─── Iota
│ │
└ Delta ┼── Kappa
│
└─ Lambda
Vertically centered, with nodeless lines pruned out:
┌ Epsilon
┌─ Beta ┼─── Zeta
│ └──── Eta
Alpha ┼ Gamma ─── Theta
│ ┌─── Iota
└ Delta ┼── Kappa
└─ Lambda
=Decorated outline=
(() => { 'use strict'; // drawTree :: Bool -> Tree String -> String const drawTree = blnCompact => tree => { // Simple decorated-outline style of ascii tree drawing, // with nodeless lines pruned out if blnCompact is True. const xs = draw(tree); return unlines( blnCompact ? ( xs.filter( s => s.split('') .some(c => !' │'.includes(c)) ) ) : xs ); }; // draw :: Tree String -> [String] const draw = node => { // shift :: String -> String -> [String] -> [String] const shift = (first, other, xs) => zipWith( append, cons(first, replicate(xs.length - 1, other)), xs ); // drawSubTrees :: [Tree String] -> [String] const drawSubTrees = xs => { const lng = xs.length; return 0 < lng ? ( 1 < lng ? append( cons( '│', shift('├─ ', '│ ', draw(xs[0])) ), drawSubTrees(xs.slice(1)) ) : cons('│', shift('└─ ', ' ', draw(xs[0]))) ) : []; }; return append( lines(node.root.toString()), drawSubTrees(node.nest) ); }; // TEST ----------------------------------------------- const main = () => { const tree = Node( 'Alpha', [ Node('Beta', [ Node('Epsilon', []), Node('Zeta', []), Node('Eta', []) ]), Node('Gamma', [Node('Theta', [])]), Node('Delta', [ Node('Iota', []), Node('Kappa', []), Node('Lambda', []) ]) ]); return [true, false] .map(blnCompact => drawTree(blnCompact)(tree)) .join('\n\n'); }; // GENERIC FUNCTIONS ---------------------------------- // Node :: a -> [Tree a] -> Tree a const Node = (v, xs) => ({ type: 'Node', root: v, // any type of value (consistent across tree) nest: xs || [] }); // append (++) :: [a] -> [a] -> [a] // append (++) :: String -> String -> String const append = (xs, ys) => xs.concat(ys); // chars :: String -> [Char] const chars = s => s.split(''); // cons :: a -> [a] -> [a] const cons = (x, xs) => [x].concat(xs); // Returns Infinity over objects without finite length. // This enables zip and zipWith to choose the shorter // argument when one is non-finite, like cycle, repeat etc // length :: [a] -> Int const length = xs => (Array.isArray(xs) || 'string' === typeof xs) ? ( xs.length ) : Infinity; // lines :: String -> [String] const lines = s => s.split(/[\r\n]/); // replicate :: Int -> a -> [a] const replicate = (n, x) => Array.from({ length: n }, () => x); // take :: Int -> [a] -> [a] const take = (n, xs) => xs.slice(0, n); // unlines :: [String] -> String const unlines = xs => xs.join('\n'); // Use of `take` and `length` here allows zipping with non-finite lists // i.e. generators like cycle, repeat, iterate. // zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] const zipWith = (f, xs, ys) => { const lng = Math.min(length(xs), length(ys)), as = take(lng, xs), bs = take(lng, ys); return Array.from({ length: lng }, (_, i) => f(as[i], bs[i], i)); }; // MAIN --- return main(); })();
{{Out}}
Alpha
├─ Beta
│ ├─ Epsilon
│ ├─ Zeta
│ └─ Eta
├─ Gamma
│ └─ Theta
└─ Delta
├─ Iota
├─ Kappa
└─ Lambda
Alpha
│
├─ Beta
│ │
│ ├─ Epsilon
│ │
│ ├─ Zeta
│ │
│ └─ Eta
│
├─ Gamma
│ │
│ └─ Theta
│
└─ Delta
│
├─ Iota
│
├─ Kappa
│
└─ Lambda
Julia
Run from Julia REPL.
using Gadfly, LightGraphs, GraphPlot gx = kronecker(5, 12, 0.57, 0.19, 0.19) gplot(gx)
Kotlin
{{trans|C}}
// version 1.2.0 import java.util.Random class Stem(var str: String? = null, var next: Stem? = null) const val SDOWN = " |" const val SLAST = " `" const val SNONE = " " val rand = Random() fun tree(root: Int, head: Stem?) { val col = Stem() var head2 = head var tail = head while (tail != null) { print(tail.str) if (tail.next == null) break tail = tail.next } println("--$root") if (root <= 1) return if (tail != null && tail.str == SLAST) tail.str = SNONE if (tail == null) { head2 = col tail = head2 } else { tail.next = col } var root2 = root while (root2 != 0) { // make a tree by doing something random val r = 1 + rand.nextInt(root2) root2 -= r col.str = if (root2 != 0) SDOWN else SLAST tree(r, head2) } tail.next = null } fun main(args: Array<String>) { val n = 8 tree(n, null) }
Sample output (unlike the C entry, should be different each time it's run):
--8
|--7
| |--6
| | |--5
| | | |--3
| | | | |--2
| | | | | |--1
| | | | | `--1
| | | | `--1
| | | `--2
| | | `--2
| | | |--1
| | | `--1
| | `--1
| `--1
`--1
Lingo
-- parent script "TreeItem"
-- (minimal implementation with direct property access)
property name
property children
on new (me, itemName)
me.name = itemName
me.children = []
return me
end
on addChild (me, child)
me.children.add(child)
end
-- print a tree
on printTree (me, treeItem, indent)
if voidP(treeItem) then treeItem = me
if voidP(indent) then indent = ""
put indent&treeItem.name
repeat with c in treeItem.children
me.printTree(c, indent&" ")
end repeat
end
Usage:
-- create a tree
root = script("TreeItem").new("root")
a = script("TreeItem").new("a")
root.addChild(a)
b = script("TreeItem").new("b")
root.addChild(b)
a1 = script("TreeItem").new("a1")
a.addChild(a1)
a11 = script("TreeItem").new("a11")
a1.addChild(a11)
a12 = script("TreeItem").new("a12")
a1.addChild(a12)
b1 = script("TreeItem").new("b1")
b.addChild(b1)
-- print the tree
root.printTree()
{{Out}}
-- "root"
-- " a"
-- " a1"
-- " a11"
-- " a12"
-- " b"
-- " b1"
Maple
T := GraphTheory:-Graph([1, 2, 3, 4, 5], {{1, 2}, {2, 3}, {2, 4}, {4, 5}}):
GraphTheory:-DrawGraph(T, style = tree);
Mathematica
Tree graph
Make a tree graph. In Mathematica, '''[DirectedEdge]''' will appear as an arrow in the code.
edges = {1 \[DirectedEdge] 2, 1 \[DirectedEdge] 3, 2 \[DirectedEdge] 4, 2 \[DirectedEdge] 5,
3 \[DirectedEdge] 6, 4 \[DirectedEdge] 7};
t = TreeGraph[edges, GraphStyle -> "VintageDiagram"]
[[File:Tree.jpg]]
Show the syntactical structure of the above code. '''Defer''' is added to impede '''TreeGraph''' from becoming a graphical object.
TreeForm[Defer@
TreeGraph[{1 \[DirectedEdge] 2, 1 \[DirectedEdge] 3, 2 \[DirectedEdge] 4, 2 \[DirectedEdge] 5,
3 \[DirectedEdge] 6, 4 \[DirectedEdge] 7}, VertexLabels -> "Name"]]
[[File:syntax.jpg]]
Opener view
Here's another way to display a tree. The triangles open/close when clicked on.
OpenerView[{1, Column@{OpenerView[{2, Column@{OpenerView[{4, 7}, True], 5}}, True],
OpenerView[{3, OpenerView[{TraditionalForm[Cos[x]], Plot[Cos[x], {x, 0, 10}, ImageSize -> 150]},
True]}, True]}}, True]
[[File:opener.jpg]]
Maxima
load(graphs)$
g: random_tree(10)$
is_tree(g);
true
draw_graph(g)$
Nim
{{trans|Haskell}}
import strutils type Node[T] = ref TNode[T] TNode[T] = object data: T left, right: Node[T] proc n[T](data: T; left, right: Node[T] = nil): Node[T] = Node[T](data: data, left: left, right: right) proc indent[T](n: Node[T]): seq[string] = if n == nil: return @["-- (null)"] result = @["--" & $n.data] for a in indent n.left: result.add " |" & a let r = indent n.right result.add " `" & r[0] for a in r[1..r.high]: result.add " " & a let tree = 1.n(2.n(4.n(7.n),5.n),3.n(6.n(8.n,9.n))) echo tree.indent.join("\n")
Perl
#!/usr/bin/perl use warnings; use strict; use utf8; use open OUT => ':utf8', ':std'; sub parse { my ($tree) = shift; if (my ($root, $children) = $tree =~ /^(.+?)\((.*)\)$/) { my $depth = 0; for my $pos (0 .. length($children) - 1) { my $char = \substr $children, $pos, 1; if (0 == $depth and ',' eq $$char) { $$char = "\x0"; } elsif ('(' eq $$char) { $depth++; } elsif (')' eq $$char) { $depth--; } } return($root, [map parse($_), split /\x0/, $children]); } else { # Leaf. return $tree; } } sub output { my ($parsed, $prefix) = @_; my $is_root = not defined $prefix; $prefix //= ' '; while (my $member = shift @$parsed) { my $last = !@$parsed || (1 == @$parsed and ref $parsed->[0]); unless ($is_root) { substr $prefix, -3, 1, ' '; substr($prefix, -4, 1) =~ s/├/│/; substr $prefix, -2, 1, ref $member ? ' ' : '└' if $last; } if (ref $member) { output($member, $prefix . '├─'); } else { print $prefix, $member, "\n"; } } } my $tree = 'a(b0(c1,c2(d(ef,gh)),c3(i1,i2,i3(jj),i4(kk,m))),b1(C1,C2(D1(E),D2,D3),C3))'; my $parsed = [parse($tree)]; output($parsed);
{{out}}
a
├─b0
│ ├─c1
│ ├─c2
│ │ └─d
│ │ ├─ef
│ │ └─gh
│ └─c3
│ ├─i1
│ ├─i2
│ ├─i3
│ │ └─jj
│ └─i4
│ ├─kk
│ └─m
└─b1
├─C1
├─C2
│ ├─D1
│ │ └─E
│ ├─D2
│ └─D3
└─C3
Perl 6
sub visualize-tree($tree, &label, &children,
:$indent = '',
:@mid = ('├─', '│ '),
:@end = ('└─', ' '),
) {
sub visit($node, *@pre) {
| gather {
take @pre[0] ~ label($node);
my @children := children($node);
my $end = @children.end;
for @children.kv -> $_, $child {
when $end { take visit($child, (@pre[1] X~ @end)) }
default { take visit($child, (@pre[1] X~ @mid)) }
}
}
}
visit($tree, $indent xx 2);
}
# example tree built up of pairs
my $tree = root=>[a=>[a1=>[a11=>[]]],b=>[b1=>[b11=>[]],b2=>[],b3=>[]]];
.map({.join("\n")}).join("\n").say for visualize-tree($tree, *.key, *.value.list);
{{out}}
root
├─a
│ └─a1
│ └─a11
└─b
├─b1
│ └─b11
├─b2
└─b3
Phix
function rand_tree(integer low, integer high)
for i=1 to 2 do
integer v = rand(high-low+1)-1+low
if v!=low
and v!=high then
return {v,rand_tree(low,v),rand_tree(v,high)}
end if
end for
return 0
end function
object tree = rand_tree(0,20) -- (can be 0, ~1% chance)
constant Horizontal = #C4,
Horizontals = "\#C4",
TopLeft = #DA,
Vertical = #B3,
BtmLeft = #C0
procedure visualise_tree(object tree, string root=Horizontals)
if atom(tree) then
puts(1,"<empty>\n")
else
object {v,l,r} = tree
integer g = root[$]
if sequence(l) then
root[$] = iff(g=TopLeft or g=Horizontal?' ':Vertical)
visualise_tree(l,root&TopLeft)
end if
root[$] = g
puts(1,root)
?v
if sequence(r) then
root[$] = iff(g=TopLeft?Vertical:' ')
visualise_tree(r,root&BtmLeft)
end if
end if
end procedure
visualise_tree(tree)
{{out}}
┌3
│└4
│ └5
┌7
┌9
│└10
│ └11
─12
│ ┌13
│┌14
└15
│ ┌16
│┌17
││└18
└19
A much simpler but less aesthetically pleasing way is just
pp(tree,{pp_Nest,10})
{{out}}
{1,
0,
{5,
0,
{9,
{8,
{6,
0,
0},
0},
0}}}
PicoLisp
'view' is a built-in function in PicoLisp.
(view '(1 (2 (3 (4) (5) (6 (7))) (8 (9)) (10)) (11 (12) (13))))
Output:
+-- 1
|
+---+-- 2
| |
| +---+-- 3
| | |
| | +---+-- 4
| | |
| | +---+-- 5
| | |
| | +---+-- 6
| | |
| | +---+-- 7
| |
| +---+-- 8
| | |
| | +---+-- 9
| |
| +---+-- 10
|
+---+-- 11
|
+---+-- 12
|
+---+-- 13
Prolog
XPCE
XPCE is the SWI-Prolog native GUI library.
% direction may be horizontal/vertical/list
display_tree(Direction) :-
sformat(A, 'Display tree ~w', [Direction]),
new(D, window(A)),
send(D, size, size(350,200)),
new(T, tree(text('Root'))),
send(T, neighbour_gap, 10),
new(S1, node(text('Child1'))),
new(S2, node(text('Child2'))),
send_list(T, son,[S1,S2]),
new(S11, node(text('Grandchild1'))),
new(S12, node(text('Grandchild2'))),
send_list(S1, son, [S11, S12]),
new(S21, node(text('Grandchild3'))),
new(S22, node(text('Grandchild4'))),
send_list(S2, son, [S21, S22]),
send(T, direction, Direction),
send(D, display, T),
send(D, open).
[[File:display_tree.png|900px]]
Python
Library module
Python has the [http://www.doughellmann.com/PyMOTW/pprint/ pprint] [http://docs.python.org/py3k/library/pprint.html module] for pretty-printing data.
If you set the presumed width of the output to 1 then pprint will print each level of a nested tuple (which is Pythons obvious method of creating a tree), on a separate line:
Python 3.2.3 (default, May 3 2012, 15:54:42) [GCC 4.6.3] on linux2 Type "copyright", "credits" or "license()" for more information. >>> help('pprint.pprint') Help on function pprint in pprint: pprint.pprint = pprint(object, stream=None, indent=1, width=80, depth=None) Pretty-print a Python object to a stream [default is sys.stdout]. >>> from pprint import pprint >>> for tree in [ (1, 2, 3, 4, 5, 6, 7, 8), (1, (( 2, 3 ), (4, (5, ((6, 7), 8))))), ((((1, 2), 3), 4), 5, 6, 7, 8) ]: print("\nTree %r can be pprint'd as:" % (tree, )) pprint(tree, indent=1, width=1) Tree (1, 2, 3, 4, 5, 6, 7, 8) can be pprint'd as: (1, 2, 3, 4, 5, 6, 7, 8) Tree (1, ((2, 3), (4, (5, ((6, 7), 8))))) can be pprint'd as: (1, ((2, 3), (4, (5, ((6, 7), 8))))) Tree ((((1, 2), 3), 4), 5, 6, 7, 8) can be pprint'd as: ((((1, 2), 3), 4), 5, 6, 7, 8) >>>
pprint (and print), prints Pythons standard container types in a format that is valid python so Python could parse its output:
tree = "a",("b0",("c1","c2",("d",("ef","gh")),"c3",("i1","i2","i3",("jj"),"i4",("kk","m"))),"b1",("C1","C2",("D1",("E"),"D2","D3"),"C3"))
>>> pprint(tree, width=1)
('a',
('b0',
('c1',
'c2',
('d',
('ef',
'gh')),
'c3',
('i1',
'i2',
'i3',
'jj',
'i4',
('kk',
'm'))),
'b1',
('C1',
'C2',
('D1',
'E',
'D2',
'D3'),
'C3')))
>>> copypasteoutput = ('a',
... ('b0',
... ('c1',
... 'c2',
... ('d',
... ('ef',
... 'gh')),
... 'c3',
... ('i1',
... 'i2',
... 'i3',
... 'jj',
... 'i4',
... ('kk',
... 'm'))),
... 'b1',
... ('C1',
... 'C2',
... ('D1',
... 'E',
... 'D2',
... 'D3'),
... 'C3')))
>>> tree == copypasteoutput
True
>>>
pprints width parameter allows it to fold some structure to better fit the page:
pprint(tree, width=60)
('a',
('b0',
('c1',
'c2',
('d', ('ef', 'gh')),
'c3',
('i1', 'i2', 'i3', 'jj', 'i4', ('kk', 'm'))),
'b1',
('C1', 'C2', ('D1', 'E', 'D2', 'D3'), 'C3')))
>>>
pprint works with with a mix of nested container types. Here we create a tree from both lists and tuples:
mixedtree = ['a', ('b0', ('c1', 'c2', ['d', ('ef', 'gh')], 'c3', ('i1', 'i2',
... 'i3', 'jj', 'i4', ['kk', 'm'])), 'b1', ('C1', 'C2', ('D1', 'E',
... 'D2', 'D3'), 'C3'))]
>>> pprint(mixedtree, width=1)
['a',
('b0',
('c1',
'c2',
['d',
('ef',
'gh')],
'c3',
('i1',
'i2',
'i3',
'jj',
'i4',
['kk',
'm'])),
'b1',
('C1',
'C2',
('D1',
'E',
'D2',
'D3'),
'C3'))]
>>> pprint(mixedtree, width=60)
['a',
('b0',
('c1',
'c2',
['d', ('ef', 'gh')],
'c3',
('i1', 'i2', 'i3', 'jj', 'i4', ['kk', 'm'])),
'b1',
('C1', 'C2', ('D1', 'E', 'D2', 'D3'), 'C3'))]
>>>
Functional composition
=Vertically centered parents=
Using the same tree structure (including tree node constructor and accessors) as in the [[Tree_traversal|Tree Traversal]] task, and centering parent nodes vertically:
{{Works with|Python|3}}
'''Textually visualized tree, with vertically-centered parent nodes''' from functools import reduce from itertools import (chain, takewhile) ''' ┌ Epsilon ├─── Zeta ┌─ Beta ┼──── Eta │ │ ┌───── Mu │ └── Theta ┤ Alpha ┤ └───── Nu ├ Gamma ────── Xi ─ Omicron │ ┌─── Iota └ Delta ┼── Kappa └─ Lambda ''' # Tree style and algorithm inspired by the Haskell snippet at: # https://doisinkidney.com/snippets/drawing-trees.html # drawTree2 :: Bool -> Bool -> Tree a -> String def drawTree2(blnCompact): '''Monospaced UTF8 left-to-right text tree in a compact or expanded format, with any lines containing no nodes optionally pruned out. ''' def go(blnPruned, tree): # measured :: a -> (Int, String) def measured(x): '''Value of a tree node tupled with string length. ''' s = ' ' + str(x) + ' ' return len(s), s # lmrFromStrings :: [String] -> ([String], String, [String]) def lmrFromStrings(xs): '''Lefts, Mid, Rights.''' i = len(xs) // 2 ls, rs = xs[0:i], xs[i:] return ls, rs[0], rs[1:] # stringsFromLMR :: ([String], String, [String]) -> [String] def stringsFromLMR(lmr): ls, m, rs = lmr return ls + [m] + rs # fghOverLMR # :: (String -> String) # -> (String -> String) # -> (String -> String) # -> ([String], String, [String]) # -> ([String], String, [String]) def fghOverLMR(f, g, h): def go(lmr): ls, m, rs = lmr return ( [f(x) for x in ls], g(m), [h(x) for x in rs] ) return lambda lmr: go(lmr) # leftPad :: Int -> String -> String def leftPad(n): return lambda s: (' ' * n) + s # treeFix :: (Char, Char, Char) -> ([String], String, [String]) # -> [String] def treeFix(l, m, r): def cfix(x): return lambda xs: x + xs return compose(stringsFromLMR)( fghOverLMR(cfix(l), cfix(m), cfix(r)) ) def lmrBuild(w, f): def go(wsTree): nChars, x = wsTree['root'] _x = ('─' * (w - nChars)) + x xs = wsTree['nest'] lng = len(xs) # linked :: String -> String def linked(s): c = s[0] t = s[1:] return _x + '┬' + t if '┌' == c else ( _x + '┤' + t if '│' == c else ( _x + '┼' + t if '├' == c else ( _x + '┴' + t ) ) ) # LEAF ------------------------------------ if 0 == lng: return ([], _x, []) # SINGLE CHILD ---------------------------- elif 1 == lng: def lineLinked(z): return _x + '─' + z rightAligned = leftPad(1 + w) return fghOverLMR( rightAligned, lineLinked, rightAligned )(f(xs[0])) # CHILDREN -------------------------------- else: rightAligned = leftPad(w) lmrs = [f(x) for x in xs] return fghOverLMR( rightAligned, linked, rightAligned )( lmrFromStrings( intercalate([] if blnCompact else ['│'])( [treeFix(' ', '┌', '│')(lmrs[0])] + [ treeFix('│', '├', '│')(x) for x in lmrs[1:-1] ] + [treeFix('│', '└', ' ')(lmrs[-1])] ) ) ) return lambda wsTree: go(wsTree) measuredTree = fmapTree(measured)(tree) levelWidths = reduce( lambda a, xs: a + [max(x[0] for x in xs)], levels(measuredTree), [] ) treeLines = stringsFromLMR( foldr(lmrBuild)(None)(levelWidths)( measuredTree ) ) return [ s for s in treeLines if any(c not in '│ ' for c in s) ] if (not blnCompact and blnPruned) else treeLines return lambda blnPruned: ( lambda tree: '\n'.join(go(blnPruned, tree)) ) # TEST ---------------------------------------------------- # main :: IO () def main(): '''Trees drawn in varying formats''' # tree1 :: Tree Int tree1 = Node(1)([ Node(2)([ Node(4)([ Node(7)([]) ]), Node(5)([]) ]), Node(3)([ Node(6)([ Node(8)([]), Node(9)([]) ]) ]) ]) # tree :: Tree String tree2 = Node('Alpha')([ Node('Beta')([ Node('Epsilon')([]), Node('Zeta')([]), Node('Eta')([]), Node('Theta')([ Node('Mu')([]), Node('Nu')([]) ]) ]), Node('Gamma')([ Node('Xi')([Node('Omicron')([])]) ]), Node('Delta')([ Node('Iota')([]), Node('Kappa')([]), Node('Lambda')([]) ]) ]) print( '\n\n'.join([ 'Fully compacted (parents not all centered):', drawTree2(True)(False)( tree1 ), 'Expanded with vertically centered parents:', drawTree2(False)(False)( tree2 ), 'Centered parents with nodeless lines pruned out:', drawTree2(False)(True)( tree2 ) ]) ) # GENERIC ------------------------------------------------- # Node :: a -> [Tree a] -> Tree a def Node(v): '''Contructor for a Tree node which connects a value of some kind to a list of zero or more child trees. ''' return lambda xs: {'type': 'Tree', 'root': v, 'nest': xs} # compose (<<<) :: (b -> c) -> (a -> b) -> a -> c def compose(g): '''Right to left function composition.''' return lambda f: lambda x: g(f(x)) # concatMap :: (a -> [b]) -> [a] -> [b] def concatMap(f): '''A concatenated list over which a function has been mapped. The list monad can be derived by using a function f which wraps its output in a list, (using an empty list to represent computational failure). ''' return lambda xs: list( chain.from_iterable(map(f, xs)) ) # fmapTree :: (a -> b) -> Tree a -> Tree b def fmapTree(f): '''A new tree holding the results of applying f to each root in the existing tree. ''' def go(x): return Node(f(x['root']))( [go(v) for v in x['nest']] ) return lambda tree: go(tree) # foldr :: (a -> b -> b) -> b -> [a] -> b def foldr(f): '''Right to left reduction of a list, using the binary operator f, and starting with an initial accumulator value. ''' def g(x, a): return f(a, x) return lambda acc: lambda xs: reduce( g, xs[::-1], acc ) # intercalate :: [a] -> [[a]] -> [a] # intercalate :: String -> [String] -> String def intercalate(x): '''The concatenation of xs interspersed with copies of x. ''' return lambda xs: x.join(xs) if isinstance(x, str) else list( chain.from_iterable( reduce(lambda a, v: a + [x, v], xs[1:], [xs[0]]) ) ) if xs else [] # iterate :: (a -> a) -> a -> Gen [a] def iterate(f): '''An infinite list of repeated applications of f to x. ''' def go(x): v = x while True: yield v v = f(v) return lambda x: go(x) # levels :: Tree a -> [[a]] def levels(tree): '''A list of the nodes at each level of the tree.''' return list( map_(map_(root))( takewhile( bool, iterate(concatMap(nest))( [tree] ) ) ) ) # map :: (a -> b) -> [a] -> [b] def map_(f): '''The list obtained by applying f to each element of xs. ''' return lambda xs: list(map(f, xs)) # nest :: Tree a -> [Tree a] def nest(t): '''Accessor function for children of tree node.''' return t['nest'] if 'nest' in t else None # root :: Tree a -> a def root(t): '''Accessor function for data of tree node.''' return t['root'] if 'root' in t else None # MAIN --- if __name__ == '__main__': main()
{{Out}}
Fully compacted (parents not all centered):
┌ 4 ─ 7
┌ 2 ┴ 5
1 ┤ ┌ 8
└ 3 ─ 6 ┴ 9
Expanded with vertically centered parents:
┌ Epsilon
│
├─── Zeta
│
┌─ Beta ┼──── Eta
│ │
│ │ ┌───── Mu
│ └── Theta ┤
Alpha ┤ └───── Nu
│
├ Gamma ────── Xi ─ Omicron
│
│ ┌─── Iota
│ │
└ Delta ┼── Kappa
│
└─ Lambda
Centered parents with nodeless lines pruned out:
┌ Epsilon
├─── Zeta
┌─ Beta ┼──── Eta
│ │ ┌───── Mu
│ └── Theta ┤
Alpha ┤ └───── Nu
├ Gamma ────── Xi ─ Omicron
│ ┌─── Iota
└ Delta ┼── Kappa
└─ Lambda
====Simple decorated-outline tree==== {{Works with|Python|3}}
'''Visualize a tree''' from itertools import (repeat, starmap) from operator import (add) # drawTree :: Tree a -> String def drawTree(tree): '''ASCII diagram of a tree.''' return '\n'.join(draw(tree)) # draw :: Tree a -> [String] def draw(node): '''List of the lines of an ASCII diagram of a tree.''' def shift(first, other, xs): return list(starmap( add, zip( [first] + list( repeat(other, len(xs) - 1) ), xs ) )) def drawSubTrees(xs): return ( ( ['│'] + shift( '├─ ', '│ ', draw(xs[0]) ) + drawSubTrees(xs[1:]) ) if 1 < len(xs) else ['│'] + shift( '└─ ', ' ', draw(xs[0]) ) ) if xs else [] return (str(root(node))).splitlines() + ( drawSubTrees(nest(node)) ) # TEST ---------------------------------------------------- # main :: IO () def main(): '''Test''' # tree :: Tree Int tree = Node(1)([ Node(2)([ Node(4)([ Node(7)([]) ]), Node(5)([]) ]), Node(3)([ Node(6)([ Node(8)([]), Node(9)([]) ]) ]) ]) print(drawTree(tree)) # GENERIC ------------------------------------------------- # Node :: a -> [Tree a] -> Tree a def Node(v): '''Contructor for a Tree node which connects a value of some kind to a list of zero or more child trees.''' return lambda xs: {'type': 'Node', 'root': v, 'nest': xs} # nest :: Tree a -> [Tree a] def nest(tree): '''Accessor function for children of tree node.''' return tree['nest'] if 'nest' in tree else None # root :: Dict -> a def root(dct): '''Accessor function for data of tree node.''' return dct['root'] if 'root' in dct else None # MAIN --- if __name__ == '__main__': main()
{{Out}}
1
│
├─ 2
│ │
│ ├─ 4
│ │ │
│ │ └─ 7
│ │
│ └─ 5
│
└─ 3
│
└─ 6
│
├─ 8
│
└─ 9
Racket
#lang racket/base
(define (visualize t0)
(let loop ([t t0] [last? #t] [indent '()])
(define (I mid last) (cond [(eq? t t0) ""] [last? mid] [else last]))
(for-each display (reverse indent))
(unless (eq? t t0) (printf "|\n"))
(for-each display (reverse indent))
(printf "~a~a\n" (I "\\-" "+-") (car t))
(for ([s (cdr t)] [n (in-range (- (length t) 2) -1 -1)])
(loop s (zero? n) (cons (I " " "| ") indent)))))
(visualize '(1 (2 (3 (4) (5) (6 (7))) (8 (9)) (10)) (11 (12) (13))))
Output:
1
|
+-2
| |
| +-3
| | |
| | +-4
| | |
| | +-5
| | |
| | \-6
| | |
| | \-7
| |
| +-8
| | |
| | \-9
| |
| \-10
|
\-11
|
+-12
|
\-13
REXX
/* REXX ***************************************************************
* 10.05.2014 Walter Pachl using the tree and the output format of C
**********************************************************************/
Call mktree
Say node.1.0name
Call tt 1,''
Exit
tt: Procedure Expose node.
/**********************************************************************
* show a subtree (recursively)
**********************************************************************/
Parse Arg k,st
Do i=1 To node.k.0
If i=node.k.0 Then
s='`--'
Else
s='|--'
c=node.k.i
If st<>'' Then
st=left(st,length(st)-2)' '
st=changestr('` ',st,' ')
Say st||s||node.c.0name
Call tt c,st||s
End
Return
Exit
mktree: Procedure Expose node. root
/**********************************************************************
* build the tree according to the task
**********************************************************************/
node.=0
r=mknode('R');
a=mknode('A'); Call attchild a,r
b=mknode('B'); Call attchild b,a
c=mknode('C'); Call attchild c,a
d=mknode('D'); Call attchild d,b
e=mknode('E'); Call attchild e,b
f=mknode('F'); Call attchild f,b
g=mknode('G'); Call attchild g,b
h=mknode('H'); Call attchild h,d
i=mknode('I'); Call attchild i,h
j=mknode('J'); Call attchild j,i
k=mknode('K'); Call attchild k,j
l=mknode('L'); Call attchild l,j
m=mknode('M'); Call attchild m,e
n=mknode('N'); Call attchild n,e
Return
mknode: Procedure Expose node.
/**********************************************************************
* create a new node
**********************************************************************/
Parse Arg name
z=node.0+1
node.z.0name=name
node.0=z
Return z /* number of the node just created */
attchild: Procedure Expose node.
/**********************************************************************
* make a the next child of father
**********************************************************************/
Parse Arg a,father
node.a.0father=father
z=node.father.0+1
node.father.z=a
node.father.0=z
node.a.0level=node.father.0level+1
Return
{{out}}
R
`--A
|--B
| |--D
| | `--H
| | `--I
| | `--J
| | |--K
| | `--L
| |--E
| | |--M
| | `--N
| |--F
| `--G
`--C
Ruby
Modifying [[Tree_traversal#Ruby]] by adding somewhere after the line
root = BinaryTreeNode.from_array [1, [2, [4, 7], [5]], [3, [6, [8], [9]]]]
the lines
require 'pp' pp root
will produce: {{out}}
#<BinaryTreeNode:0x804f854
@left=
#<BinaryTreeNode:0x804fad8
@left=#<BinaryTreeNode:0x804fc28 @left=nil, @right=nil, @value=7>,
@right=nil,
@value=4>,
@right=#<BinaryTreeNode:0x804f9c0 @left=nil, @right=nil, @value=5>,
@value=2>,
@right=
#<BinaryTreeNode:0x804f074
@left=
#<BinaryTreeNode:0x804f218
@left=#<BinaryTreeNode:0x804f544 @left=nil, @right=nil, @value=8>,
@right=#<BinaryTreeNode:0x804f384 @left=nil, @right=nil, @value=9>,
@value=6>,
@right=nil,
@value=3>,
@value=1>
def ptree(tree,indent=" ") case tree when Array head,*tail=tree ptree(head,indent) s=tail.size-1 tail.each_with_index { |tree1,i| ptree(tree1,"#{indent}#{((i==s) ? ' ':'|')} ") } else puts(indent.gsub(/\s\s$/,"--").gsub(/ --$/,"\\--")+tree.to_s) end end ptree [1,2,3,[4,5,6,[7,8,9]],3,[22,33]]
will produce: {{out}}
--1
|--2
|--3
|--4
| |--5
| |--6
| \--7
| |--8
| \--9
|--3
\--22
\--33
Rust
Console visualization of binary trees translated from parts of [http://rosettacode.org/wiki/AVL_tree/C the C AVL tree solution].
extern crate rustc_serialize; extern crate term_painter; use rustc_serialize::json; use std::fmt::{Debug, Display, Formatter, Result}; use term_painter::ToStyle; use term_painter::Color::*; type NodePtr = Option<usize>; #[derive(Debug, PartialEq, Clone, Copy)] enum Side { Left, Right, Up, } #[derive(Debug, PartialEq, Clone, Copy)] enum DisplayElement { TrunkSpace, SpaceLeft, SpaceRight, SpaceSpace, Root, } impl DisplayElement { fn string(&self) -> String { match *self { DisplayElement::TrunkSpace => " │ ".to_string(), DisplayElement::SpaceRight => " ┌───".to_string(), DisplayElement::SpaceLeft => " └───".to_string(), DisplayElement::SpaceSpace => " ".to_string(), DisplayElement::Root => "├──".to_string(), } } } #[derive(Debug, Clone, Copy, RustcDecodable, RustcEncodable)] struct Node<K, V> { key: K, value: V, left: NodePtr, right: NodePtr, up: NodePtr, } impl<K: Ord + Copy, V: Copy> Node<K, V> { pub fn get_ptr(&self, side: Side) -> NodePtr { match side { Side::Up => self.up, Side::Left => self.left, _ => self.right, } } } #[derive(Debug, RustcDecodable, RustcEncodable)] struct Tree<K, V> { root: NodePtr, store: Vec<Node<K, V>>, } impl<K: Ord + Copy + Debug + Display, V: Debug + Copy + Display> Tree<K, V> { pub fn get_node(&self, np: NodePtr) -> Node<K, V> { assert!(np.is_some()); self.store[np.unwrap()] } pub fn get_pointer(&self, np: NodePtr, side: Side) -> NodePtr { assert!(np.is_some()); self.store[np.unwrap()].get_ptr(side) } // Prints the tree with root p. The idea is to do an in-order traversal // (reverse in-order in this case, where right is on top), and print nodes as they // are visited, one per line. Each invocation of display() gets its own copy // of the display element vector e, which is grown with either whitespace or // a trunk element, then modified in its last and possibly second-to-last // characters in context. fn display(&self, p: NodePtr, side: Side, e: &Vec<DisplayElement>, f: &mut Formatter) { if p.is_none() { return; } let mut elems = e.clone(); let node = self.get_node(p); let mut tail = DisplayElement::SpaceSpace; if node.up != self.root { // If the direction is switching, I need the trunk element to appear in the lines // printed before that node is visited. if side == Side::Left && node.right.is_some() { elems.push(DisplayElement::TrunkSpace); } else { elems.push(DisplayElement::SpaceSpace); } } let hindex = elems.len() - 1; self.display(node.right, Side::Right, &elems, f); if p == self.root { elems[hindex] = DisplayElement::Root; tail = DisplayElement::TrunkSpace; } else if side == Side::Right { // Right subtree finished elems[hindex] = DisplayElement::SpaceRight; // Prepare trunk element in case there is a left subtree tail = DisplayElement::TrunkSpace; } else if side == Side::Left { elems[hindex] = DisplayElement::SpaceLeft; let parent = self.get_node(node.up); if parent.up.is_some() && self.get_pointer(parent.up, Side::Right) == node.up { // Direction switched, need trunk element starting with this node/line elems[hindex - 1] = DisplayElement::TrunkSpace; } } // Visit node => print accumulated elements. Each node gets a line and each line gets a // node. for e in elems.clone() { let _ = write!(f, "{}", e.string()); } let _ = write!(f, "{key:>width$} ", key = Green.bold().paint(node.key), width = 2); let _ = write!(f, "{value:>width$}\n", value = Blue.bold().paint(format!("{:.*}", 2, node.value)), width = 4); // Overwrite last element before continuing traversal elems[hindex] = tail; self.display(node.left, Side::Left, &elems, f); } } impl<K: Ord + Copy + Debug + Display, V: Debug + Copy + Display> Display for Tree<K, V> { fn fmt(&self, f: &mut Formatter) -> Result { if self.root.is_none() { write!(f, "[empty]") } else { let mut v: Vec<DisplayElement> = Vec::new(); self.display(self.root, Side::Up, &mut v, f); Ok(()) } } } /// Decodes and prints a previously generated tree. fn main() { let encoded = r#"{"root":0,"store":[{"key":0,"value":0.45,"left":1,"right":3, "up":null},{"key":-8,"value":-0.94,"left":7,"right":2,"up":0}, {"key":-1, "value":0.15,"left":8,"right":null,"up":1},{"key":7, "value":-0.29,"left":4, "right":9,"up":0},{"key":5,"value":0.80,"left":5,"right":null,"up":3}, {"key":4,"value":-0.85,"left":6,"right":null,"up":4},{"key":3,"value":-0.46, "left":null,"right":null,"up":5},{"key":-10,"value":-0.85,"left":null, "right":13,"up":1},{"key":-6,"value":-0.42,"left":null,"right":10,"up":2}, {"key":9,"value":0.63,"left":12,"right":null,"up":3},{"key":-3,"value":-0.83, "left":null,"right":11,"up":8},{"key":-2,"value":0.75,"left":null,"right":null, "up":10},{"key":8,"value":-0.48,"left":null,"right":null,"up":9},{"key":-9, "value":0.53,"left":null,"right":null,"up":7}]}"#; let tree: Tree<i32, f32> = json::decode(&encoded).unwrap(); println!("{}", tree); }
{{out}} [[File:Visualize_a_tree-rust-1.png]]
Sidef
{{trans|Perl 6}}
func visualize_tree(tree, label, children, indent = '', mids = ['├─', '│ '], ends = ['└─', ' '], ) { func visit(node, pre) { gather { take(pre[0] + label(node)) var chldn = children(node) var end = chldn.end chldn.each_kv { |i, child| if (i == end) { take(visit(child, [pre[1]] ~X+ ends)) } else { take(visit(child, [pre[1]] ~X+ mids)) } } } } visit(tree, [indent] * 2) } var tree = 'root':['a':['a1':['a11':[]]],'b':['b1':['b11':[]],'b2':[],'b3':[]]] say visualize_tree(tree, { .first }, { .second }).flatten.join("\n")
{{out}}
root
├─a
│ └─a1
│ └─a11
└─b
├─b1
│ └─b11
├─b2
└─b3
Tcl
{{tcllib|struct::tree}}
package require struct::tree proc visualize_tree {tree {nameattr name}} { set path {} $tree walk [$tree rootname] -order both {mode node} { if {$mode eq "enter"} { set s "" foreach p $path { append s [expr {[$tree next $p] eq "" ? " " : "\u2502 "}] } lappend path $node append s [expr { [$tree next $node] eq "" ? "\u2514\u2500" : "\u251c\u2500" }] if {[$tree keyexists $node $nameattr]} { set name [$tree get $node $nameattr] } else { # No node name attribute; use the raw name set name $node } puts "$s$name" } else { set path [lrange $path 0 end-1] } } }
Demonstrating:
# Sample tree to demonstrate with struct::tree t deserialize {root {} {} a 0 {} d 3 {} e 3 {} f 9 {} b 0 {} c 0 {}} visualize_tree t
{{out}}
└─root
├─a
│ ├─d
│ └─e
│ └─f
├─b
└─c
Yabasic
clear screen
dim colore$(1)
maxCol = token("white yellow cyan green red", colore$())
showTree(0, "[1[2[3][4[5][6]][7]][8[9]]]")
print "\n\n\n"
showTree(0, "[1[2[3[4]]][5[6][7[8][9]]]]")
sub showTree(n, A$)
local i, c$
static co
c$ = left$(A$, 1)
if c$ = "" return
switch c$
case "[": co = co + 1 : showTree(n + 1, right$(A$, len(A$) - 1))
break
case "]": co = co - 1 : showTree(n - 1, right$(A$, len(A$) - 1))
break
default: for i = 2 to n
print " ";
next i
co = max(min(co, maxCol), 1)
print color(colore$(co)) "\xc0-", c$
showTree(n, right$(A$, len(A$) - 1))
break
end switch
end sub
zkl
In zkl, the Vault is a global object store object (aka thread safe dictionary). Basically a tiny file system for objects. It has a "dir" method to display the contents {{out}}
:Vault.dir()
...
Compiler
Asm
Compiler
Dictionary
Exception
Test
UnitTester
foo
bar
...
It does this with data that looks like: L("Network.TCPServerSocket","File","ZKLShell.Granny","Int","startup","Utils.Inspector","Thread.Straw","Ref","Utils.Argh" ...)
fcn vaultDir(out=Console){
const INDENT=" ";
space:=""; lastPath:=L();
foreach fullname in (TheVault.BaseClass.contents.sort()){
path:=fullname.split("."); name:=path.pop();
if(lastPath==path) out.writeln(space,name);
else{
n:=0; p:=path.copy();
try{
while(path[0]==lastPath[0])
{ n+=1; path.pop(0); lastPath.pop(0); }
}catch{}
space=INDENT*n;
foreach dir in (path){ out.writeln(space,dir); space+=INDENT; }
out.writeln(space,name);
lastPath=p;
}
}
"" // so startup has something to display
}